
A MiniZinc Tutorial

Kim Marriott and Peter J. Stuckey
with contributions from Leslie De Koninck and Horst Samulowitz

Contents

1 Introduction 2

2 Basic Modelling in MiniZinc 2

2.1 Our First Example . 2

2.2 An Arithmetic Optimisation Example . 5

2.3 Datafiles and Assertions . 7

2.4 Real Number Solving . 10

2.5 Basic structure of a model . 12

3 More Complex Models 14

3.1 Arrays and Sets . 14

3.2 Global Constraints . 24

3.3 Conditional Expressions . 25

3.4 Complex Constraints . 27

1

3.5 Set Constraints . 32

3.6 Enumerated Types . 36

4 Predicates 38

4.1 Global Constraints . 38

4.1.1 Alldifferent . 38

4.1.2 Cumulative . 38

4.1.3 Table . 40

4.1.4 Regular . 42

4.2 Defining Predicates . 43

4.3 Reflection Functions . 46

4.4 Local Variables . 48

4.5 Domain Reflection Functions . 50

4.6 Scope . 51

5 Search 51

5.1 Finite Domain Search . 53

5.2 Search Annotations . 54

5.3 Annotations . 56

6 Effective Modelling Practices in MiniZinc 58

6.1 Variable Bounds . 58

6.2 Unconstrained Variables . 60

6.3 Effective Generators . 62

6.4 Redundant Constraints . 63

6.5 Modelling Choices . 64

6.6 Multiple Modelling and Channels . 65

7 Boolean Satisfiability Modelling in MiniZinc 67

7.1 Modelling Integers . 68

7.2 Modelling Disequality . 68

7.3 Modelling Cardinality . 69

A MiniZinc Keywords 77

B MiniZinc Operators 77

C MiniZinc Functions 77

2

1 Introduction

MiniZinc is a language designed for specifying constrained optimization and decision prob-

lems over integers and real numbers. A MiniZinc model does not dictate how to solve the

problem although the model can contain annotations which are used to guide the underlying

solver.

MiniZinc is designed to interface easily to different backend solvers. It does this by trans-

forming an input MiniZinc model and data file into a FlatZinc model. FlatZinc models consist

of variable declaration and constraint definitions as well as a definition of the objective func-

tion if the problem is an optimization problem. The translation from MiniZinc to FlatZinc

is specializable to individual backend solvers, so they can control what form constraints end

up in. In particular, MiniZinc allows the specification of global constraints by decomposition.

2 Basic Modelling in MiniZinc

In this section we introduce the basic structure of a MiniZinc model using two simple exam-

ples.

2.1 Our First Example

Figure 1: Australian states.

As our first example, imagine that we wish to colour a map of Australia as shown in

Figure 1. It is made up of seven different states and territories each of which must be given

a colour so that adjacent regions have different colours.

We can model this problem very easily in MiniZinc. The model is shown in Figure 2. The

first line in the model is a comment. A comment starts with a ‘%’ which indicates that the

rest of the line is a comment. MiniZinc has no begin/end comment symbols (such as C’s /*

and */ comments).

The next part of the model declares the variables in the model. The line

3

AUST ≡ [DOWNLOAD]

% Colouring Australia using nc colours

int: nc = 3;

var 1..nc: wa; var 1..nc: nt; var 1..nc: sa; var 1..nc: q;

var 1..nc: nsw; var 1..nc: v; var 1..nc: t;

constraint wa != nt;

constraint wa != sa;

constraint nt != sa;

constraint nt != q;

constraint sa != q;

constraint sa != nsw;

constraint sa != v;

constraint q != nsw;

constraint nsw != v;

solve satisfy;

output ["wa=", show(wa), "\t nt=", show(nt),

"\t sa=", show(sa), "\n", "q=", show(q),

"\t nsw=", show(nsw), "\t v=", show(v), "\n",

"t=", show(t), "\n"];

Figure 2: A MiniZinc model aust.mzn for colouring the states and territories in Australia.

int: nc = 3;

specifies a parameter in the problem which is the number of colours to be used. Parameters

are similar to variables in most programming languages. They must be declared and given a

type. In this case the type is int. They are given a value by an assignment. MiniZinc allows

the assignment to be included as part of the declaration (as in the line above) or to be a

separate assignment statement. Thus the following is equivalent to the single line above

int: nc;

nc = 3;

Unlike variables in many programming languages a parameter can only be given a single

value. It is an error for a parameter to occur in more than one assignment.

The basic parameter types are integers (int), floating point numbers (float), Booleans

(bool) and strings (string). Arrays and sets are also supported.

MiniZinc models can also contain another kind of variable called a decision variable.

Decision variables are variables in the sense of mathematical or logical variables. Unlike

parameters and variables in a standard programming language, the modeller does not need

4

http://www.minizinc.org/downloads/tutorial-examples-latest/aust.mzn

to give them a value. Rather the value of a decision variable is unknown and it is only when

the MiniZinc model is executed that the solving system determines if the decision variable

can be assigned a value that satisfies the constraints in the model and if so what this is.

In our example model we associate a decision variable with each region, wa, nt, sa, q,

nsw, v and t, which stands for the (unknown) colour to be used to fill the region.

For each decision variable we need to give the set of possible values the variable can take.

This is called the variable’s domain. This can be given as part of the variable declaration and

the type of the decision variable is inferred from the type of the values in the domain.

In MiniZinc decision variables can be Booleans, integers, floating point numbers, or sets.

Also supported are arrays whose elements are decision variables. In our MiniZinc model we

use integers to model the different colours. Thus each of our decision variables is declared to

have the domain 1..nc which is an integer range expression indicating the set {1, 2, ..., nc}

using the var declaration. The type of the values is integer so all of the variables in the

model are integer decision variables.

Identifiers
Identifiers which are used to name parameters and variables are sequences of lower and

uppercase alphabetic characters, digits and the underscore ‘_’ character. They must start

with a alphabetic character. Thus myName_2 is a valid identifier. MiniZinc (and Zinc)

keywords are not allowed to be used as identifier names, they are listed in Appendix A

Neither are MiniZinc operators allowed to be used as identifier names; they are listed in

Appendix B.

MiniZinc carefully distinguishes between the two kinds of model variables: parameters

and decision variables. The kinds of expressions that can be constructed using decision

variables are more restricted than those that can be built from parameters. However, in any

place that a decision variable can be used, so can a parameter of the same type.

Formally the distinction between parameters and decision variables is called the instanti-

ation of the variable. The combination of variable instantiation and type is called a type-inst.

As you start to use MiniZinc you will undoubtedly see examples of type-inst errors.

The next component of the model are the constraints. These specify the Boolean expres-

sions that the decision variables must satisfy to be a valid solution to the model. In this case

we have a number of not equal constraints between the decision variables enforcing that if

two states are adjacent then they must have different colours.

Relational Operators
MiniZinc provides the relational operators: equal (= or ==), not equal (!=), strictly less

than (< strictly greater than (>, less than or equal to (<=), and greater than or equal to

(>=).

The next line in the model:

solve satisfy;

5

Indicates the kind of problem it is. In this case it is a satisfaction problem: we wish to find a

value for the decision variables that satisfies the constraints but we do not care which one.

The final part of the model is the output statement. This tells MiniZinc what to print

when the model has been run and a solution is found.

Output
An output statement is followed by a list of strings. These are typically either string

literals which are written between double quotes and use a C like notation for special

characters, or an expression of the form show(X) where X is the name of a decision

variable or parameter. In the example \n represents the newline character and \t a tab.

There are also formatted varieties of show for numbers: show_int(n,X) outputs the value

of integer X in at least |n| characters, right justified if n> 0 and left justified otherwise;

show_float(n,d,X) outputs the value of float X in at least |n| characters, right justified if

n> 0 and left justified otherwise, with d characters after the decimal point.

String literals must fit on a single line. Longer string literals can be split across multiple

lines using the string concatenation operator ++ For example, the string literal "Invalid

datafile: Amount of flour is non-negative" is equivalent to the string literal

expression "Invalid datafile: " ++

"Amount of flour is non-negative".

A model can contain at most one output statement.

With the G12 implementation of MiniZinc we can evaluate our model by typing

$ mzn-g12fd aust.mzn

where aust.mzn is the name of the file containing our MiniZinc model. We must use the

file extension “.mzn” to indicate a MiniZinc model. The command mzn-g12fd uses the G12

finite domain solver to evaluate our model.

When we run this we obtain the result:

wa=1 nt=3 sa=2

q=1 nsw=3 v=1

t=1

The line of 10 dashes ---------- is output automatically added by the MiniZinc output to

indicate a solution has been found.

2.2 An Arithmetic Optimisation Example

Our second example is motivated by the need to bake some cakes for a fete at our local

school. We know how to make two sorts of cakes.1 A banana cake which takes 250g of

1WARNING: please don’t use these recipes at home

6

CAKES ≡ [DOWNLOAD]

% Baking cakes for the school fete

var 0..100: b; % no. of banana cakes

var 0..100: c; % no. of chocolate cakes

% flour

constraint 250*b + 200*c <= 4000;

% bananas

constraint 2*b <= 6;

% sugar

constraint 75*b + 150*c <= 2000;

% butter

constraint 100*b + 150*c <= 500;

% cocoa

constraint 75*c <= 500;

% maximize our profit

solve maximize 400*b + 450*c;

output ["no. of banana cakes = ", show(b), "\n",

"no. of chocolate cakes = ", show(c), "\n"];

Figure 3: Model for determining how many banana and chocolate cakes to bake for the

school fete.

self-raising flour, 2 mashed bananas, 75g sugar and 100g of butter, and a chocolate cake

which takes 200g of self-raising flour, 75g of cocoa, 150g sugar and 150g of butter. We can

sell a chocolate cake for $4.50 and a banana cake for $4.00. And we have 4kg self-raising

flour, 6 bananas, 2kg of sugar, 500g of butter and 500g of cocoa. The question is how many

of each sort of cake should we bake for the fete to maximise the profit. A possible MiniZinc

model is shown in Figure 3.

The first new feature is the use of arithmetic expressions.

7

http://www.minizinc.org/downloads/tutorial-examples-latest/cakes.mzn

Integer arithmetic Operators
MiniZinc provides the standard integer arithmetic operators. Addition (+), subtrac-

tion (-), multiplication (*), integer division (div) and integer modulus (mod). It also

provides + and - as unary operators.

Integer modulus is defined to give a result (a mod b) that has the same sign as the

dividend a. Integer division is defined so that a= b*(a div b) + (a mod b).

MiniZinc provides standard integer functions for absolute value (abs) and power func-

tion (pow). For example abs(-4) and pow(2,5) evaluate to 4 and 32 respectively.

The syntax for arithmetic literals is reasonably standard. Integer literals can be decimal,

hexadecimal or octal. For instance 0, 005, 123, 0x1b7, 0o777.

The second new feature shown in the example is optimisation. The line

solve maximize 400 * b + 450 * c;

specifies that we want to find a solution that maximises the expression in the solve statement

called the objective. The objective can be any kind of arithmetic expression. One can replace

the key word maximize by minimize to specify a minimisation problem.

When we run this we obtain the result:

no. of banana cakes = 2

no. of chocolate cakes = 2

==========

The line ========== is output automatically for optimisation problems when the system

has proved that a solution is optimal.

2.3 Datafiles and Assertions

A drawback of this model is that if we wish to solve a similar problem the next time we need

to bake cakes for the school (which is often) we need to modify the constraints in the model

to reflect the ingredients that we have in the pantry. If we want to reuse the model then we

would be better off to make the amount of each ingredient a parameter of the model and

then set their values at the top of the model.

Even better would be to set the value of these parameters in a separate data file. MiniZ-

inc (like most other modelling languages) allows the use of data files to set the value of

parameters declared in the original model. This allows the same model to be easily used

with different data by running it with different data files.

Data files must have the file extension “.dzn” to indicate a MiniZinc data file and a model

can be run with any number of data files (though a variable/parameter can only be assigned

a value in one file.

Our new model is shown in Figure 4. We can run it using the command

$ mzn-g12fd cakes2.mzn pantry.dzn

8

CAKES2 ≡ [DOWNLOAD]

% Baking cakes for the school fete (with data file)

int: flour; %no. grams of flour available

int: banana; %no. of bananas available

int: sugar; %no. grams of sugar available

int: butter; %no. grams of butter available

int: cocoa; %no. grams of cocoa available

constraint assert(flour >= 0,"Invalid datafile: " ++

"Amount of flour is non-negative");

constraint assert(banana >= 0,"Invalid datafile: " ++

"Amount of banana is non-negative");

constraint assert(sugar >= 0,"Invalid datafile: " ++

"Amount of sugar is non-negative");

constraint assert(butter >= 0,"Invalid datafile: " ++

"Amount of butter is non-negative");

constraint assert(cocoa >= 0,"Invalid datafile: " ++

"Amount of cocoa is non-negative");

var 0..100: b; % no. of banana cakes

var 0..100: c; % no. of chocolate cakes

% flour

constraint 250*b + 200*c <= flour;

% bananas

constraint 2*b <= banana;

% sugar

constraint 75*b + 150*c <= sugar;

% butter

constraint 100*b + 150*c <= butter;

% cocoa

constraint 75*c <= cocoa;

% maximize our profit

solve maximize 400*b + 450*c;

output ["no. of banana cakes = ", show(b), "\n",

"no. of chocolate cakes = ", show(c), "\n"];

Figure 4: Data-independent model for determining how many banana and chocolate cakes

to bake for the school fete.

9

http://www.minizinc.org/downloads/tutorial-examples-latest/cakes2.mzn

PANTRY ≡ [DOWNLOAD]

flour = 4000;

banana = 6;

sugar = 2000;

butter = 500;

cocoa = 500;

PANTRY2 ≡ [DOWNLOAD]

flour = 8000;

banana = 11;

sugar = 3000;

butter = 1500;

cocoa = 800;

Figure 5: Example data files for cakes2.mzn

where the data file pantry.dzn is defined in Figure 7 gives the same result as cakes.mzn.

The output from running the command

$ mzn-g12fd cakes2.mzn pantry2.dzn

with an alternate data set defined in Figure 7 is

no. of banana cakes = 3

no. of chocolate cakes = 8

Small data files can be entered without directly creating a .dzn file, using the command

line flag -D string, where string is the contents of the data file. For example the command

$ mzn-g12fd cakes2.mzn -D \

"flour=4000;banana=6;sugar=2000;butter=500;cocoa=500;"

will give identical results to

$ mzn-g12fd cakes2.mzn pantry.dzn

Data files can only contain assignment statements which should be to variables and pa-

rameters in a model.

Defensive programming suggests that we should check that the values in the data file

are reasonable. For our example it is sensible to check that the quantity of all ingredients

is non-negative and generate a run-time error if this is not true. MiniZinc provides a built-

in Boolean operator for checking parameter values. The form is assert(B,S). The Boolean

expression s is evaluated and if it is false execution aborts and the string expression S is

evaluated and printed as an error message. To check and generate an appropriate error

message if the amount of flour is negative we can simply add the line

constraint assert(flour >= 0.0,"Amount of flour is non-negative");

to our model. Notice that the assert expression is a Boolean expression and so is regarded

as a type of constraint. We can add similar lines to check that the quantity of the other

ingredients is non-negative.

10

http://www.minizinc.org/downloads/tutorial-examples-latest/pantry.dzn
http://www.minizinc.org/downloads/tutorial-examples-latest/pantry2.dzn

LOAN ≡ [DOWNLOAD]

% variables

var float: R; % quarterly repayment

var float: P; % principal initially borrowed

var 0.0 .. 10.0: I; % interest rate

% intermediate variables

var float: B1; % balance after one quarter

var float: B2; % balance after two quarters

var float: B3; % balance after three quarters

var float: B4; % balance owing at end

constraint B1 = P * (1.0 + I) - R;

constraint B2 = B1 * (1.0 + I) - R;

constraint B3 = B2 * (1.0 + I) - R;

constraint B4 = B3 * (1.0 + I) - R;

solve satisfy;

output [

"Borrowing ", show_float(0, 2, P), " at ", show(I*100.0),

"% interest, and repaying ", show_float(0, 2, R),

"\nper quarter for 1 year leaves ", show_float(0, 2, B4), " owing\n"

];

Figure 6: Model for determining relationships between a 1 year loan repaying every quarter.

2.4 Real Number Solving

MiniZinc also supports “real number” constraint solving using floating point solving. Con-

sider a problem of taking out a short loan for one year to be repaid in 4 quarterly instalments.

A model for this is shown in Figure 6. It uses a simple interest calculation to calculate the

balance after each quarter.

Note that we declare a float variable f using var float: f , and we can declare a float

variable f in a fixed range l to u with a declaration of the form var l .. u: f , where l and

u are floating point expressions.

We can use the same model to answer a number of different questions. The first question

is: if I borrow $1000 at 4% and repay $260 per quarter, how much do I end up owing? This

question is encoded by the data file loan1.dzn.

Since we wish to use real number solving we need to use a different solver than the

finite domain solver used by mzn-g12fd. A suitable solver would be one that supports mixed

integer linear programming. The MiniZinc distribution contains such a solver. We can invoke

11

http://www.minizinc.org/downloads/tutorial-examples-latest/loan.mzn

LOAN1 ≡ [DOWNLOAD]

I = 0.04;

P = 1000.0;

R = 260.0;

LOAN2 ≡ [DOWNLOAD]

I = 0.04;

P = 1000.0;

B4 = 0.0;

LOAN3 ≡ [DOWNLOAD]

I = 0.04;

R = 250.0;

B4 = 0.0;

Figure 7: Example data files for loan.mzn

it using the command mzn-g12mip

$ mzn-g12mip loan.mzn loan1.dzn

The output is

Borrowing 1000.00 at 4.0% interest, and repaying 260.00

per quarter for 1 year leaves 65.78 owing

The second question is if I want to borrow $1000 at 4% and owe nothing at the end,

how much do I need to repay? This question is encoded by the data file loan2.dzn. The

output from running the command

$ mzn-g12mip loan.mzn loan2.dzn

is

Borrowing 1000.00 at 4.0\% interest, and repaying 275.49

per quarter for 1 year leaves 0.00 owing

The third question is if I can repay $250 a quarter, how much can I borrow at 4% to end

up owing nothing? This question is encoded by the data file loan3.dzn. The output from

running the command

$ mzn-g12mip loan.mzn loan3.dzn

is

Borrowing 907.47 at 4.0\% interest, and repaying 250.00

per quarter for 1 year leaves 0.00 owing

12

http://www.minizinc.org/downloads/tutorial-examples-latest/loan1.dzn
http://www.minizinc.org/downloads/tutorial-examples-latest/loan2.dzn
http://www.minizinc.org/downloads/tutorial-examples-latest/loan3.dzn

Floating point arithmetic Operators
MiniZinc provides the standard floating point arithmetic operators. Addition (+), sub-

traction (-), multiplication (*) and floating point division (/). It also provides + and -

as unary operators.

MiniZinc does not automatically coerce integers to floating point numbers. The built-in

function int2float can be used for this purpose.

MiniZinc also includes the floating point functions for absolute value (abs), square root

(sqrt), natural logarithm (ln), logarithm base 2 (log2), logarithm base 10 (log10),

exponentiation of e (exp), sine (sin), cosine (cos), tangent (tan), arcsine (asin), ar-

ccosine (acos), arctangent (atan), hyperbolic sine (sinh), hyperbolic cosine (cosh),

hyperbolic tangent (tanh), hyperbolic arcsine (asinh), hyperbolic arccosine (acosh),

hyperbolic arctangent (atanh), and power (pow) which is the only binary function, the

rest are unary.

The syntax for arithmetic literals is reasonably standard. Example float literals are 1.05,

1.3e-5 and 1.3+E5.

2.5 Basic structure of a model

We are now in a position to summarise the basic structure of a MiniZinc model. It consists

of multiple items each of which has a semicolon ‘;’ at its end. Items can occur in any order.

For example, identifiers need not be declared before they are used.

There are 7 kinds of items.

• Include items allow the contents of another file to be inserted into the model. They

have the form:

include 〈filename〉;

where filename is a string literal. They allow large models to be split into smaller sub-

models and also the inclusion of constraints defined in library files. We shall see an

example in Figure 11.

• Variable declarations declare new variables. Such variables are global variables and

can be referred to from anywhere in the model. Variables come in two kinds. Pa-

rameters which are assigned a fixed value in the model or in a data file and decision

variables whose value is found only when the model is solved. We say that parame-

ters are fixed and decision variables unfixed. The variable can be optionally assigned a

value as part of the declaration. The form is:

〈type inst expr〉: 〈variable〉 [= 〈expression〉];

13

The type-inst expr gives the instantiation and type of the variable. These are one of

the more complex aspects of MiniZinc. Instantiations are declared using par for pa-

rameters and var for decision variables. If there is no explicit instantiation declaration

then the variable is a parameter. The type can be a base type, an integer or float range

or an array or a set. The base types are float, int, string, bool, ann of which only

float, int and bool can be used for decision variables. The base type ann is an an-

notation— we shall discuss annotations in section 5. Integer range expressions can be

used instead of the type int. Similarly float range expressions can be used instead of

type float. These are typically used to give the domain of an integer decision variable

but can also be used to restrict the range of an integer parameter.

• Assignment items assign a value to a variable. They have the form:

〈variable〉 = 〈expression〉;

Values can be assigned to decision variables in which case the assignment is equivalent

to writing constraint 〈variable〉 = 〈expression〉;

• Constraint items form the heart of the model. They have the form:

constraint 〈Boolean expression〉;

We have already seen examples of simple constraints using arithmetic comparison and

the built-in assert operator. In the next section we shall see examples of more complex

constraints.

• Solve items specify exactly what kind of solution is being looked for. As we have seen

they have one of three forms:

solve satisfy;

solve maximize 〈arithmetic expression〉;

solve minimize 〈arithmetic expression〉;

A model is required to have exactly one solve item.

• Output items are for nicely presenting the results of the model execution. They have

the form:

output [〈string expression〉, · · · , 〈string expression〉];

• Predicate and test items are for defining new constraints and Boolean tests. We discuss

these in section 4.

• The annotation item is used to define a new annotation. We discuss these in section 5.

14

3 More Complex Models

In the last section we introduced the basic structure of a MiniZinc model. In this section we

introduce the array and set data structures and more complex constraints.

3.1 Arrays and Sets

Almost always we are interested in building models where the number of constraints and

variables is dependent on the input data. In order to do so we will usually use arrays.

Consider a simple finite element model for modelling temperatures on a rectangular

sheet of metal. We approximate the temperatures across the sheet by breaking the sheet into

a finite number of elements in a 2 dimensional matrix. A model is shown in Figure 8. It

declares the width w and height h of the finite element model. The declaration

ARRAYDEC ≡

array[0..w,0..h] of var float: t; % temperature at point (i,j)

declares a two dimensional array of float variables t with rows numbered 0 to w and columns

0 to h, to represent the temperatures at each point in the metal plate. We can access the

element of the array in the i th row and j th column using an expression t[i , j].

Laplace’s equation states that when the plate reaches a steady state the temperature at

each internal point is the average of its orthogonal neighbours. The constraint

EQUATION ≡

% Laplace equation: each internal temp. is average of its neighbours

constraint forall(i in 1..w-1, j in 1..h-1)(

4.0*t[i,j] = t[i-1,j] + t[i,j-1] + t[i+1,j] + t[i,j+1]);

ensures each internal point (i, j) to the average of its four orthogonal neighbours. The

constraints

SIDES ≡

% edge constraints

constraint forall(i in 1..w-1)(t[i,0] = left);

constraint forall(i in 1..w-1)(t[i,h] = right);

constraint forall(j in 1..h-1)(t[0,j] = top);

constraint forall(j in 1..h-1)(t[w,j] = bottom);

constrains the temperatures on each edge to be equal, and gives these temperatures names:

left, right, top and bottom. While the constraints

CORNERS ≡

% corner constraints

constraint t[0,0]=0.0;

constraint t[0,h]=0.0;

constraint t[w,0]=0.0;

constraint t[w,h]=0.0;

15

LAPLACE ≡ [DOWNLOAD]

int: w = 4;

int: h = 4;

◮ ARRAYDEC

var float: left; % left edge temperature

var float: right; % right edge temperature

var float: top; % top edge temperature

var float: bottom; % bottom edge temperature

◮ EQUATION

◮ SIDES

◮ CORNERS

left = 0.0;

right = 0.0;

top = 100.0;

bottom = 0.0;

solve satisfy;

output [show_float(6, 2, t[i,j]) ++

if j == h then "\n" else " " endif |

i in 0..w, j in 0..h

];

Figure 8: Finite element plate model for determining steady state temperatures

(laplace.mzn).

ensure that the corners (which are irrelevant) are set to 0.0. We can determine the temper-

atures in a plate broken into 5 × 5 elements with left, right and bottom temperature 0 and

top temperature 100 with the model shown in Figure 8.

Running the command

$ mzn-g12mip laplace.mzn

gives the output

0.00 100.00 100.00 100.00 0.00

0.00 42.86 52.68 42.86 0.00

0.00 18.75 25.00 18.75 0.00

0.00 7.14 9.82 7.14 0.00

0.00 0.00 0.00 0.00 0.00

16

http://www.minizinc.org/downloads/tutorial-examples-latest/laplace.mzn

Our cake baking problem is an example of a very simple kind of production planning

problem. In this kind of problem we wish to determine how much of each kind of product to

make to maximise the profit where manufacturing a product consumes varying amounts of

some fixed resources. We can generalise the MiniZinc model in Figure 4 to handle this kind

of problem with a model that is generic in the kinds of resources and products. The model

is shown in Figure 9 and a sample data file (for the cake baking example) is shown in ??.

The new feature in the model is the use of arrays and sets. These allow us to treat the

choice of resources and products as parameters to the model. The first item in the model

int: nproducts;

declares that the number of products nproducts is a parameter. The next item

set of int: Products = 1..nproducts;

declares a new parameter Products, which is the set of products. It is initialized to the set

{1, 2, ..., nproducts} using a range expression.

17

SIMPLE-PROD-PLANNING ≡ [DOWNLOAD]

% Number of different products

int: nproducts;

set of int: Products = 1..nproducts;

% profit per unit for each product

array[Products] of int: profit;

array[Products] of string: pname;

% Number of resources

int: nresources;

set of int: Resources = 1..nresources;

% amount of each resource available

array[Resources] of int: capacity;

array[Resources] of string: rname;

% units of each resource required to produce 1 unit of product

array[Products, Resources] of int: consumption;

constraint assert(forall (r in Resources, p in Products)

(consumption[p,r] >= 0), "Error: negative consumption");

% bound on number of Products

int: mproducts = max (p in Products)

(min (r in Resources where consumption[p,r] > 0)

(capacity[r] div consumption[p,r]));

% Variables: how much should we make of each product

array[Products] of var 0..mproducts: produce;

array[Resources] of var 0..max(capacity): used;

% Production cannot use more than the available Resources:

constraint forall (r in Resources) (

used[r] = sum (p in Products)(consumption[p, r] * produce[p])

/\ used[r] <= capacity[r]

);

% Maximize profit

solve maximize sum (p in Products) (profit[p]*produce[p]);

output [show(pname[p]) ++ " = " ++ show(produce[p]) ++ ";\n" |

p in Products] ++

[show(rname[r]) ++ " = " ++ show(used[r]) ++ ";\n" |

r in Resources];

Figure 9: Model for a simple production planning problem (simple-prod-planning.mzn).

18

http://www.minizinc.org/downloads/tutorial-examples-latest/simple-prod-planning.mzn

SIMPLE-PROD-PLANNING-DATA ≡ [DOWNLOAD]

% Data file for simple production planning model

nproducts = 2; % banana cakes and chocolate cakes

profit = [400, 450]; % in cents

pname = ["banana-cake", "chocolate-cake"];

nresources = 5; % flour, banana, sugar, butter, cocoa

capacity = [4000, 6, 2000, 500, 500];

rname = ["flour","banana","sugar","butter","cocoa"];

consumption= [| 250, 2, 75, 100, 0,

| 200, 0, 150, 150, 75 |];

Figure 10: Example data file for the simple production planning problem model shown in

Figure 9.

Sets
Set variables are declared with a declaration of form

set of 〈type-inst〉

where sets of integers, floats or Booleans are allowed. Set literals are of form

{ 〈expr1〉, ... , 〈exprn〉 }

or are range expressions over either integers or floats of form

〈expr1〉 .. 〈expr2〉

The standard set operations are provided: element membership (in), set containment

(subset, superset), union (union), intersection (inter), set difference (diff), sym-

metric set difference (symdiff) and the number of elements in the set (card).

As we have seen set variables and set literals (including ranges) can be used as an

implicit type in variable declarations in which case the variable has the type of the

elements in the set and the variable is implicitly constrained to be a member of the set.

The third item declares an array of integers:

array[Products] of int: profit;

The index set of the array profit is Products. This means 1, 2, ..., nproducts are valid indices

into the array. The array access profit[i] gives the profit for product i. The following are

equivalent declarations:

array[1..nproducts] of int: profit;

array[Products] of par int: profit;

19

http://www.minizinc.org/downloads/tutorial-examples-latest/simple-prod-planning-data.dzn

In the example data file we have initialized the array using a list of integers

profit = [400,450];

While MiniZinc does not provide an explicit list type, one-dimensional arrays with an index

set 1..n behave like lists, and we will sometimes refer to them as lists. The fourth item

define an array of strings, the product names:

array[Products] of string: name;

In a similar fashion, in the next 4 items we declare a parameter nresources which is

the number of resources, a set of resources resources, an array capacity which gives the

amount of each resource that is available, and an array rname of resource names.

More interestingly, the item

array[Products, Resources] of int: consumption;

declares a 2-D array consumption. The value of consumption[p,r] is the amount of re-

source r required to produce one unit of product p. Note that the first index is the row and

the second is the column.

The data file contains an example initialization of a 2-D array:

consumption= [| 250, 2, 75, 100, 0,

| 200, 0, 150, 150, 75 |];

Notice how the delimiter | is used to separate rows.

20

Arrays
Thus, MiniZinc provides one- and multi-dimensional arrays which are declared using

the type:

array[〈index-set1〉, ..., 〈index-setn〉] of 〈type-inst〉

MiniZinc requires that the array declaration contains the index set of each dimension

and that the index set is either an integer range or a set variable initialised to an integer

range. Arrays can contain any of the base types: integers, Booleans, floats or strings.

These can be fixed or unfixed except for strings which can only be parameters. Arrays

can also contain sets but they cannot contain arrays.

One-dimensional array literals are of form

[〈expr1〉, ... , 〈exprn〉]

while two-dimensional array literals are of form

[| 〈expr1,1〉, ... , 〈expr1,n〉, | ..., | 〈exprm,1〉, ... , 〈exprm,n〉 |]

where the array has m rows and n columns.

The family of built-in functions array1d, array2d, etc, can be used to initialise an array

of any dimension from a list (or more exactly a one-dimensional array). The call:

arraynd(〈index-set1〉, ..., 〈index-setn〉, 〈list〉)

returns an n dimensional array with index sets given by the first n arguments and the

last argument contains the elements of the array. For instance, array2d(1..3, 1..2,

[1, 2, 3, 4, 5, 6]) is equivalent to [|1, 2 |3, 4 |5, 6|]).

Array elements are accessed in the usual way: a[i,j] gives the element in the i th row

and j th column.

The concatenation operator ‘++’ can be used to concatenate two one-dimensional arrays

together. The result is a list, i.e. a one-dimensional array whose elements are indexed

from 1. For instance [4000, 6] ++ [2000, 500, 500] evaluates to [4000, 6, 2000,

500, 500]. The built-in function length returns the length of a one-dimensional array.

The next item in the model defines the parameter mproducts. This is set to an upper-

bound on the number of products of any type that can be produced. This is quite a complex

example of nested array comprehensions and aggregation operators. We shall introduce

these before we try and understand this item and the rest of the model.

First, MiniZinc provides list comprehensions similar to those provided in many func-

tional programming languages. For example, the list comprehension [i + j | i, j in

1..3 where j < i] evaluates to [1 + 2, 1 + 3, 2 + 3] which is [3, 4, 5]. Of course

[3, 4, 5] is simply an array with index set 1..3.

MiniZinc also provides set comprehensions which have a similar syntax: for instance, {i

+ j | i, j in 1..3 where j < i} evaluates to the set {3, 4, 5}.

21

List and Set Comprehensions
The generic form of a list comprehension is

[〈expr〉 | 〈generator-exp〉]

The expression 〈expr〉 specifies how to construct elements in the output list from the ele-

ments generated by 〈generator-exp〉. The generator 〈generator-exp〉 consists of a comma

separated sequence of generator expressions optionally followed by a Boolean expres-

sion. The two forms are

〈generator〉, ..., 〈generator〉

〈generator〉, ..., 〈generator〉 where 〈bool-exp〉

The optional 〈bool-exp〉 in the second form acts as a filter on the generator expression:

only elements satisfying the Boolean expression are used to construct elements in the

output list. A generator 〈generator〉 has form

〈identifier〉,..., 〈identifier〉 in 〈array-exp〉

Each identifier is an iterator which takes the values of the array expression in turn, with

the last identifier varying most rapidly.

Set comprehensions are almost identical to list comprehensions: the only difference is

the use of ‘{’ and ‘}’ to enclose the expression rather than ‘[’ and ‘]’. The elements

generated by a set comprehension have to be fixed, i.e. free of decision variables.

Second, MiniZinc provides a number of built-in functions that take a one-dimensional

array and aggregate the elements. Probably the most useful of these is forall. This takes

an array of Boolean expressions (that is, constraints) and returns a single Boolean expression

which is the logical conjunction of the Boolean expressions in the array.

For example, consider the expression

forall([a[i] != a[j] | i,j in 1..3 where i < j])

where a is an arithmetic array with index set 1..3. This constrains the elements in a to be

different. The list comprehension evaluates to [a[1] != a[2], a[1] != a[3], a[2] !=

a[3]] and so the forall function returns the logical conjunction a[1] != a[2] ∧ a[1]

!= a[3] ∧ a[2] != a[3].

22

Aggregation functions
The aggregation functions for arithmetic arrays are: sum which adds the elements,

product which multiplies them together, and min and max which respectively return

the least and greatest element in the array. When applied to an empty array, min and

max give a run-time error, sum returns 0 and product returns 1.

MiniZinc provides four aggregation functions for arrays containing Boolean expressions.

As we have seen, the first of these, forall, returns a single constraint which is the

logical conjunction of the constraints. The second function, exists, returns the logical

disjunction of the constraints. Thus, forall enforces that all constraints in the array

hold, while exists ensures that at least one of the constraints holds. The third function,

xorall, ensures that an odd number of constraints hold. The fourth function,iffall,

ensures that an even number of constraints holds.

The third, and final, piece in the puzzle is that MiniZinc allows a special syntax for

aggregation functions when used with an array comprehension. Instead of writing

forall([a[i] != a[j] | i,j in 1..3 where i < j])

the modeller can instead write the more mathematical looking

forall (i,j in 1..3 where i < j) (a[i] != a[j])

The two expressions are completely equivalent: the modeller is free to use whichever they

feel looks most natural.

Generator call expressions
A generator call expression has form

〈agg-func〉 (〈generator-exp〉) (〈exp〉)

The round brackets around the generator expression 〈generator-exp〉 and the constructor

expression 〈exp〉 are not optional: they must be there. This is equivalent to writing

〈agg-func〉([〈expr〉 | 〈generator-exp〉])

The aggregation function 〈agg-func〉 is any of the built-in MiniZinc aggregation func-

tions.

We are now in a position to understand the rest of the simple production planning model

shown in Figure 9. For the moment ignore the item defining mproducts. The item after-

wards:

array[Products] of var 0..mproducts: produce;

defines a one-dimensional array produce of decision variables. The value of produce[p]

will be set to the amount of product p in the optimal solution. The next item

array[Resources] of var 0..max(capacity): used;

23

defines a set of auxiliary variables that record how much of each resource is used. The next
two constraints

constraint forall (r in Resources)

(used[r] = sum (p in products) (consumption[p, r] * produce[p]));

constraint forall (r in Resources)(used[r] <= capacity[r]);

computes in used[r] the total consumption of the resource r and ensures it is less than the available

amount. Finally, the item

solve maximize sum (p in Products) (profit[p]*produce[p]);

indicates that this is a maximisation problem and that the objective to be maximised is the total profit.

We now return to the definition of mproducts. For each product p the expression

(min (r in Resources where consumption[p,r] > 0)

(capacity[r] div consumption[p,r])

determines the maximum amount of p that can be produced taking into account the amount of each

resource r and how much of r is required to produce the product. Notice the use of the filter where

consumption[p,r] > 0 to ensure that only resources required to make the product are considered

so as to avoid a division by zero error. Thus, the complete expression

int: mproducts = max (p in Products)

(min (r in Resources where consumption[p,r] > 0)

(capacity[r] div consumption[p,r]));

computes the maximum amount of any product that can be produced, and so this can be used as an

upper bound on the domain of the decision variables in produce.

Finally notice the output item is more complex, and uses list comprehensions to create an under-

standable output. Running

$ mzn-g12fd simple-prod-planning.mzn simple-prod-planning.dzn

results in the output

banana-cake = 2;

chocolate-cake = 2;

flour = 900;

banana = 4;

sugar = 450;

butter = 500;

cocoa = 150;

24

SEND-MORE-MONEY ≡ [DOWNLOAD]

include "alldifferent.mzn";

var 1..9: S;

var 0..9: E;

var 0..9: N;

var 0..9: D;

var 1..9: M;

var 0..9: O;

var 0..9: R;

var 0..9: Y;

constraint 1000 * S + 100 * E + 10 * N + D

+ 1000 * M + 100 * O + 10 * R + E

= 10000 * M + 1000 * O + 100 * N + 10 * E + Y;

constraint alldifferent([S,E,N,D,M,O,R,Y]);

solve satisfy;

output [" ",show(S),show(E),show(N),show(D),"\n",

"+ ",show(M),show(O),show(R),show(E),"\n",

"= ",show(M),show(O),show(N),show(E),show(Y),"\n"];

Figure 11: Model for the cryptarithmetic problem SEND+MORE=MONEY

(send-more-money.mzn).

3.2 Global Constraints

MiniZinc includes a library of global constraints which can also be used to define models. An example

is the alldifferent constraint which requires all the variables appearing in its argument to be

different.

The SEND+MORE=MONEY problem requires assigning a different digit to each letter so that

the arithmetic constraint holds. The model shown in Figure 11 uses the constraint expression

alldifferent([S,E,N,D,M,O,R,Y]) to ensure that each letter takes a different digit value. The

global constraint is made available in the model using include item

include "alldifferent.mzn";

which makes the global constraint alldifferent usable by the model. One could replace this line by

include "globals.mzn";

which includes all globals.

A list of all the global constraints defined for MiniZinc is included in the release documentation.

See subsection 4.1 for a description of some important global constraints.

25

http://www.minizinc.org/downloads/tutorial-examples-latest/send-more-money.mzn

3.3 Conditional Expressions

MiniZinc provides a conditional if-then-else-endif expression. An example of its use is

int: r = if y != 0 then x div y else 0 endif;

which sets r to x divided by y unless y is zero in which case it sets it to zero.

Conditional expressions
The form of a conditional expression is

if 〈boolexp〉 then 〈exp1〉 else 〈exp2〉 endif

It is a true expression rather than a control flow statement and so can be used in other expres-

sions. It evaluates to 〈exp1〉 if the Boolean expression 〈boolexp〉 is true and 〈exp2〉 otherwise. The

type of the conditional expression is that of 〈exp1〉 and 〈exp2〉 which must have the same type.

The Boolean expression is not allowed to contain decision variables, only parameters.

Conditional expressions are very useful in building complex models, or complex output. Consider

the model of Sudoku problems shown in Figure 12. The initial board positions are given by the

start parameter where 0 represents an empty board position. This is converted to constraints on the

decision variables puzzle using the conditional expression

constraint forall(i,j in PuzzleRange)(

if start[i,j] > 0 then puzzle[i,j] = start[i,j] else true endif);

Conditional expressions are also very useful for defining complex output. In the Sudoku model

of Figure 12 the expression

if j mod S == 0 then " " else "" endif

inserts an extra space between groups of size S. The output expression also use conditional expres-

sions to and add blank lines after each S lines. The resulting output is highly readable.

The remaining constraints ensure that the numbers appearing in each row and column and S× S

subsquare are all different.

One can use MiniZinc to search for all solutions to a satisfaction problem (solve satisfy) by

using the flag -a or -all-solutions.

$ mzn-g12fd --all-solutions sudoku.mzn sudoku.dzn

results in

5 9 3 7 6 2 8 1 4

2 6 8 4 3 1 5 7 9

7 1 4 9 8 5 2 3 6

3 2 6 8 5 9 1 4 7

1 8 7 3 2 4 9 6 5

4 5 9 1 7 6 3 2 8

9 4 2 6 1 8 7 5 3

8 3 5 2 4 7 6 9 1

6 7 1 5 9 3 4 8 2

==========

26

SUDOKU ≡ [DOWNLOAD]

include "alldifferent.mzn";

int: S;

int: N = S * S;

int: digs = ceil(log(10.0,int2float(N))); % digits for output

set of int: PuzzleRange = 1..N;

set of int: SubSquareRange = 1..S;

array[1..N,1..N] of 0..N: start; %% initial board 0 = empty

array[1..N,1..N] of var PuzzleRange: puzzle;

% fill initial board

constraint forall(i,j in PuzzleRange)(

if start[i,j] > 0 then puzzle[i,j] = start[i,j] else true endif);

% All different in rows

constraint forall (i in PuzzleRange) (

alldifferent([puzzle[i,j] | j in PuzzleRange]));

% All different in columns.

constraint forall (j in PuzzleRange) (

alldifferent([puzzle[i,j] | i in PuzzleRange]));

% All different in sub-squares:

constraint

forall (a, o in SubSquareRange)(

alldifferent([puzzle[(a-1) *S + a1, (o-1)*S + o1] |

a1, o1 in SubSquareRange]));

solve satisfy;

output [show_int(digs,puzzle[i,j]) ++ " " ++

if j mod S == 0 then " " else "" endif ++

if j == N /\ i != N then

if i mod S == 0 then "\n\n" else "\n" endif

else "" endif

| i,j in PuzzleRange] ++ ["\n"];

Figure 12: Model for generalized Sudoku problem (sudoku.mzn).

27

http://www.minizinc.org/downloads/tutorial-examples-latest/sudoku.mzn

SUDOKU.DZN ≡ [DOWNLOAD]

S=3;

start=[|

0, 0, 0, 0, 0, 0, 0, 0, 0|

0, 6, 8, 4, 0, 1, 0, 7, 0|

0, 0, 0, 0, 8, 5, 0, 3, 0|

0, 2, 6, 8, 0, 9, 0, 4, 0|

0, 0, 7, 0, 0, 0, 9, 0, 0|

0, 5, 0, 1, 0, 6, 3, 2, 0|

0, 4, 0, 6, 1, 0, 0, 0, 0|

0, 3, 0, 2, 0, 7, 6, 9, 0|

0, 0, 0, 0, 0, 0, 0, 0, 0|];

 6 8 4 1 7

 8 5 3

 2 6 8 9 4

 7 9

 5 1 6 3 2

 4 6 1

 3 2 7 6 9

Figure 13: Example data file for generalised Sudoku problem (sudoku.dzn) and the problem

it represents.

Here the output verifies there is only one solution. The line ========== is output when the system

has output all possible solutions, here verifying that there is exactly one.

3.4 Complex Constraints

Constraints are the core of the MiniZinc model. We have seen simple relational expressions but

constraints can be considerably more powerful than this. A constraint is allowed to be any Boolean

expression. Imagine a scheduling problem in which we have two tasks that cannot overlap in time. If

s1 and s2 are the corresponding start times and d1 and d2 are the corresponding durations we can

express this as:

constraint s1 + d1 <= s2 \/ s2 + d2 <= s1;

which ensures that the tasks do not overlap.

Booleans
Boolean expressions in MiniZinc can be written using a standard mathematical syntax. The

Boolean literals are true and false and the Boolean operators are conjunction, i.e and (/\),

disjunction, i.e or (\/), only-if (<-), implies (->), if-and-only-if (<->) and negation (not). The

built-in function bool2int coerces Booleans to integers: it returns 1 if its argument is true and

0 otherwise.

28

http://www.minizinc.org/downloads/tutorial-examples-latest/sudoku.dzn

JOBSHOP ≡ [DOWNLOAD]

int: jobs; % no of jobs

int: tasks; % no of tasks per job

array [1..jobs,1..tasks] of int: d; % task durations

int: total = sum(i in 1..jobs, j in 1..tasks)

(d[i,j]); % total duration

int: digs = ceil(log(10.0,int2float(total))); % digits for output

array [1..jobs,1..tasks] of var 0..total: s; % start times

var 0..total: end; % total end time

constraint %% ensure the tasks occur in sequence

forall(i in 1..jobs) (

forall(j in 1..tasks-1)

(s[i,j] + d[i,j] <= s[i,j+1]) /\

s[i,tasks] + d[i,tasks] <= end

);

constraint %% ensure no overlap of tasks

forall(j in 1..tasks) (

forall(i,k in 1..jobs where i < k) (

s[i,j] + d[i,j] <= s[k,j] \/

s[k,j] + d[k,j] <= s[i,j]

)

);

solve minimize end;

output ["end = ", show(end), "\n"] ++

[show_int(digs,s[i,j]) ++ " " ++

if j == tasks then "\n" else "" endif |

i in 1..jobs, j in 1..tasks];

Figure 14: Model for job-shop scheduling problems (jobshop.mzn).

The job shop scheduling model given in Figure 14 gives a realistic example of the use of this

disjunctive modelling capability. In job shop scheduling we have a set of jobs, each consisting of a

sequence of tasks on separate machines: so task [i, j] is the task in the i th job performed on the j th

machine. Each sequence of tasks must be completed in order, and no two tasks on the same machine

can overlap in time. Even small instances of this problem can be quite challenging to find optimal

solutions.

The command

29

http://www.minizinc.org/downloads/tutorial-examples-latest/jobshop.mzn

$ mzn-g12fd --all-solutions jobshop.mzn jobshop.dzn

solves a small job shop scheduling problem, and illustrates the behaviour of all-solutions for

optimisation problems. Here the solver outputs each better solutions as it finds it, rather than all

possible optimal solutions. The (partial) output from this command is:

end = 41

0 1 5 10 13

5 8 10 25 26

1 10 17 21 28

8 14 21 26 32

9 16 22 32 40

and after quite a few more solutions then finally:

end = 31

0 3 7 12 18

6 9 19 26 28

2 11 15 19 24

1 2 3 4 10

9 16 26 28 30

end = 30

1 2 6 11 17

6 10 15 22 23

2 6 11 15 25

0 1 2 3 9

9 16 22 24 29

==========

indicating an optimal solution with end time 30 is finally found, and proved optimal. We can generate

all optimal solutions by adding a constraint that end = 30 and changing the solve item to solve

satisfy and then executing

$ mzn-g12fd --all-solutions jobshop.mzn jobshop.dzn

For this problem there are very many optimal solutions.

Another powerful modelling feature in MiniZinc is that decision variables can be used for array

access. As an example, consider the (old-fashioned) stable marriage problem. We have n (straight)

women and n (straight) men. Each man has a ranked list of women and vice versa. We want to find

a husband/wife for each women/man so that all marriages are stable in the sense that:

• whenever m prefers another women o to his wife w, o prefers her husband to m, and

• whenever w prefers another man o to her husband m, o prefers his wife to w.

30

STABLE-MARRIAGE ≡ [DOWNLOAD]

int: n;

set of int: Men = 1..n;

set of int: Women = 1..n;

array[Women, Men] of int: rankWomen;

array[Men, Women] of int: rankMen;

array[Men] of var Women: wife;

array[Women] of var Men: husband;

◮ ASSIGNMENT

◮ RANKING

solve satisfy;

output ["wives= ", show(wife),"\n", "husbands= ", show(husband), "\n"];

Figure 15: Model for stable marriage problem (stable-marriage.mzn).

This can be elegantly modelled in MiniZinc. The model and sample data is shown in Figures ??

and 16. The model is based on a model written in the OPL modelling language.

The first three items in the model declare the number of men/women and the set of men and

women. The matrices rankWomen and rankMen, respectively, give the women’s ranking of the men

and the men’s ranking of the women. Thus, the entry rankWomen[w,m] gives the ranking by woman

w of man m. The lower the number in the ranking, the more the man or women is preferred.

There are two arrays of decision variables: wife and husband. These, respectively, contain the

wife of each man and the husband of each women.

The first two constraints

ASSIGNMENT ≡

constraint forall (m in Men) (husband[wife[m]]=m);

constraint forall (w in Women) (wife[husband[w]]=w);

ensure that the assignment of husbands and wives is consistent: w is the wife of m implies m is the

husband of w and vice versa. Notice how in husband[wife[m]] the index expression wife[m] is a

decision variable, not a parameter.

The next two constraints are a direct encoding of the stability condition:

31

http://www.minizinc.org/downloads/tutorial-examples-latest/stable-marriage.mzn

STABLE-MARRIAGE.DZN ≡ [DOWNLOAD]

n = 5;

rankWomen =

[| 1, 2, 4, 3, 5,

| 3, 5, 1, 2, 4,

| 5, 4, 2, 1, 3,

| 1, 3, 5, 4, 2,

| 4, 2, 3, 5, 1 |];

rankMen =

[| 5, 1, 2, 4, 3,

| 4, 1, 3, 2, 5,

| 5, 3, 2, 4, 1,

| 1, 5, 4, 3, 2,

| 4, 3, 2, 1, 5 |];

Figure 16: Example data file for the stable marriage problem model shown in Figure 15.

RANKING ≡

constraint forall (m in Men, o in Women) (

rankMen[m,o] < rankMen[m,wife[m]] ->

rankWomen[o,husband[o]] < rankWomen[o,m]);

constraint forall (w in Women, o in Men) (

rankWomen[w,o] < rankWomen[w,husband[w]] ->

rankMen[o,wife[o]] < rankMen[o,w]);

This natural modelling of the stable marriage problem is made possible by the ability to use deci-

sion variables as array indices and to construct constraints using the standard Boolean connectives.

The alert reader may be wondering at this stage, what happens if the array index variable takes a

value that is outside the index set of the array. MiniZinc treats this as failure: an array access a[e]

implicitly adds the constraint e in index_set(a) to the closest surrounding Boolean context where

index_set(a) gives the index set of a.

Thus for example, consider the variable declarations

array[1..2] of int: a= [2,3];

var 0..2: x;

var 2..3: y;

The constraint a[x] = y will succeed with x = 1∧ y = 2 and x = 2∧ y = 3. And the constraint not

a[x] = y will succeed with x = 0∧ y = 2, x = 0∧ y = 3, x = 1∧ y = 3 and x = 2∧ y = 2.

In the case of invalid array accesses by a parameter, the formal semantics of MiniZinc treats this

as failure so as to ensure that the treatment of parameters and decision variables is consistent, but a

warning is issued since it is almost always an error.

32

http://www.minizinc.org/downloads/tutorial-examples-latest/stable-marriage.dzn

MAGIC-SERIES ≡ [DOWNLOAD]

int: n;

array[0..n-1] of var 0..n: s;

constraint forall(i in 0..n-1) (

s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));

solve satisfy;

output ["s = ", show(s), ";\n"] ;

Figure 17: Model solving the magic series problem (magic-series.mzn).

The coercion function bool2int can be called with any Boolean expression. This allows the

MiniZinc modeller to use so called higher order constraints. As a simple example consider the magic

series problem: find a list of numbers s = [s0, . . . , sn−1] such that si is the number of occurrences of i

in s. An example is s = [1,2,1,0].

A MiniZinc model for this problem is shown in Figure 17. The use of bool2int allows us to sum

up the number of times the constraint s[j]=i is satisfied. Executing the command

$ mzn-g12fd --all-solutions magic-series.mzn -D "n=4;"

leads to the output

s = [1, 2, 1, 0];

s = [2, 0, 2, 0];

==========

indicating exactly two solutions to the problem.

3.5 Set Constraints

Another powerful modelling feature of MiniZinc is that it allows sets containing integers to be decision

variables: this means that when the model is evaluated the solver will find which elements are in the

set.

As a simple example, consider the 0/1 knapsack problem. This is a restricted form of the knapsack

problem in which we can either choose to place the item in the knapsack or not. Each item has a

weight and a profit and we want to find which choice of items leads to the maximum profit subject

to the knapsack not being too full.

It is natural to model this in MiniZinc with a single decision variable:

SETVAR ≡

var set of Items: knapsack;

33

http://www.minizinc.org/downloads/tutorial-examples-latest/magic-series.mzn

KNAPSACK ≡ [DOWNLOAD]

int: n;

set of int: Items = 1..n;

int: capacity;

array[Items] of int: profits;

array[Items] of int: weights;

◮ SETVAR

◮ CAPACITY

solve maximize sum (i in Items) (bool2int(i in knapsack)*profits[i]) ;

output [show(knapsack),"\n"];

Figure 18: Model for the 0/1 knapsack problem (knapsack.mzn).

where items is the set of possible items. If the arrays weight[i] and profit[i] respectively give the

weight and profit of item i, and the maximum weight the knapsack can carry is given by capacity

then it is natural to write the capacity constraint as

constraint sum (i in knapsack) (weights[i]) <= capacity;

and the solve item as

solve maximize sum (i in knapsack) (profits[i]) ;

Unfortunately, MiniZinc does not allow this and the capacity constraint and solve item will lead to a

type-inst error stating that a generator expression must iterate over an array (or a fixed set, which

can be coerced into an array) and cannot iterate over a var set.

At first glance, this seems an insurmountable problem. However, we can use the coercion function

bool2int to overcome the problem. For the capacity constraint we write

CAPACITY ≡

constraint sum (i in Items)

(bool2int(i in knapsack)*weights[i]) <= capacity;

Our generator expression now iterates over the domain of knapsack which is fixed and uses bool2int

to appropriately transform the weight depending on whether the item is in knapsack or not. We can

use a similar trick to rewrite the solve item. This leads to the MiniZinc model shown in Figure 18

which is a valid MiniZinc model.

Notice that the var keyword comes before the set declaration indicating that the set itself is the

decision variable. This contrasts with an array in which the var keyword qualifies the elements in

the array rather than the array itself since the basic structure of the array is fixed, i.e. its index set.

As a more complex example of set constraint consider the social golfers problem shown in

Figure 19. The aim is to schedule a golf tournament over weeks using groups × size golfers. Each

34

http://www.minizinc.org/downloads/tutorial-examples-latest/knapsack.mzn

SOCIAL-GOLFERS ≡ [DOWNLOAD]

include "partition_set.mzn";

int: weeks;

int: groups;

int: size;

int: ngolfers = groups*size;

array[1..weeks,1..groups] of var set of 1..ngolfers: Sched;

◮ CONSTRAINTS

◮ SYMMETRY

solve :: set_search([Sched[i,1] | i in 1..weeks] ++

[Sched[i,j] | i in 1..weeks, j in 2..groups],

input_order, indomain_min, complete)

satisfy;

output [show(Sched[i,j]) ++ " " ++

if j == groups then "\n" else "" endif |

i in 1..weeks, j in 1..groups];

Figure 19: Model for the social golfers problems (social-golfers.mzn).

week we have to schedule groups different groups each of size size. No two pairs of golfers should

ever play in two groups.

The variables in the model are sets of golfers Sched[i,j] for the i th week and j th group,

The constraints shown in Figure 20 first enforces an ordering on the first set in each week to

remove symmetry in swapping weeks. Next it enforces an ordering on the sets in each week, and

makes each set have a cardinality of size. It then ensures that each week is a partition of the set

of golfers using the global constraint partition_set. Finally the last constraint ensures that no two

players play in two groups together (since the cardinality of the intersection of any two groups is at

most 1).

There are also symmetry breaking initialisation constraints shown in Figure 21: the first week

is fixed to have all players in order; the second week is made up of the first players of each of

the first groups in the first week; finally the model forces the first size players to appear in their

corresponding group number for the remaining weeks.

Executing the command

$ mzn-g12fd social-golfers.mzn social-golfers.dzn

where the data file defines a problem with 4 weeks, with 4 groups of size 3 leads to the output

35

http://www.minizinc.org/downloads/tutorial-examples-latest/social-golfers.mzn

CONSTRAINTS ≡

constraint

forall (i in 1..weeks-1) (

Sched[i,1] < Sched[i+1,1]

) /\

forall (i in 1..weeks, j in 1..groups) (

card(Sched[i,j]) = size

/\ forall (k in j+1..groups) (

Sched[i,j] < Sched[i,k]

/\ Sched[i,j] intersect Sched[i,k] = {}

)

) /\

forall (i in 1..weeks) (

partition_set([Sched[i,j] | j in 1..groups], 1..ngolfers)

/\ forall (j in 1..groups-1) (

Sched[i,j] < Sched[i,j+1]

)

) /\

forall (i in 1..weeks-1, j in i+1..weeks) (

forall (x in 1..groups, y in 1..groups) (

card(Sched[i,x] intersect Sched[j,y]) <= 1

)

);

Figure 20: Constraints for the social golfers problem.

SYMMETRY ≡

constraint

% Fix the first week %

forall (i in 1..groups, j in 1..size) (

((i-1)*size + j) in Sched[1,i]

) /\

% Fix first group of second week %

forall (i in 1..size) (

((i-1)*size + 1) in Sched[2,1]

) /\

% Fix first ’size’ players

forall (w in 2..weeks, p in 1..size) (

p in Sched[w,p]

);

Figure 21: Symmetry breaking initialization for the social golfers problem.

36

1..3 4..6 7..9 10..12

{ 1, 4, 7 } { 2, 5, 10 } { 3, 9, 11 } { 6, 8, 12 }

{ 1, 5, 8 } { 2, 6, 11 } { 3, 7, 12 } { 4, 9, 10 }

{ 1, 6, 9 } { 2, 4, 12 } { 3, 8, 10 } { 5, 7, 11 }

Notice hows sets which are ranges may be output in range format.

3.6 Enumerated Types

MiniZinc does not include enumerated types, but they can be mimicked using a style of modelling.

The enumerated type is actually a range of integers 1..n and each element in the type is a parameter

with different value in the range.

For example we can mimick an enumerated type of 3 colors {red, yel low, blue} using

set of int: Colors = 1..3;

int: red = 1;

int: yellow = 2;

int: blue = 3;

array[Colors] of string: name = ["red", "yellow", "blue"];

var Colors: x;

constraint x != red;

output [name[fix(x)]];

We can define a color variable x as shown. We can use red, yellow and blue as if they were color

value. In the output statment, we can print the color using the name array, by making using the built-

in fix function which returns the value of a decision variable (if it has been fixed, as in this example

by search).

Fix
In output items the built-in function fix checks that the value of a decision variable is fixed and

coerces the instantiation from decision variable to parameter.

The model of Figure 22 arranges seats at the wedding table. The table has 12 numbered seats in

order around the table, 6 on each side. Males must sit in odd numbered seats, and females in even.

Ed cannot sit at the end of the table because of a phobia, and the bride and groom must sit next to

each other. The aim is to maximize the distance between known hatreds. The distance between seats

is the difference in seat number if on the same side, otherwise its the distance to the opposite seat +

1. The enumerated type Guests is implemented by a range, and using integer parameters to name

each guest. The rest of the model uses the guest names.

Running

$ mzn-g12fd wedding.mzn

Results in the output

37

WEDDING ≡ [DOWNLOAD]

set of int: Guests = 1..12;

int: bride = 1; int: groom = 2; int: bestman = 3;

int: bridesmaid = 4; int: bob = 5; int: carol = 6;

int: ted = 7; int: alice = 8; int: ron = 9;

int: rona = 10; int: ed = 11; int: clara = 12;

array[Guests] of string: name = ["bride","groom","bestman",

"bridesmaid","bob","carol","ted","alice","ron","rona","ed","clara"];

set of int: Seats = 1..12;

set of int: Hatreds = 1..5;

array[Hatreds] of Guests: h1 = [groom, carol, ed, bride, ted];

array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];

set of int: Males = {groom, bestman, bob, ted, ron,ed};

set of int: Females = {bride, bridesmaid, carol, alice, rona, clara};

array[Guests] of var Seats: pos; % seat of guest

array[Hatreds] of var Seats: p1; % seat of guest 1 in hatred

array[Hatreds] of var Seats: p2; % seat of guest 2 in hatred

array[Hatreds] of var 0..1: sameside; % seats of hatred on same side

array[Hatreds] of var Seats: cost; % penalty of hatred

include "alldifferent.mzn";

constraint alldifferent(pos);

constraint forall(g in Males)(pos[g] mod 2 == 1);

constraint forall(g in Females)(pos[g] mod 2 == 0);

constraint not (pos[ed] in {1,6,7,12});

constraint abs(pos[bride] - pos[groom]) <= 1 /\

(pos[bride] <= 6 <-> pos[groom] <= 6);

constraint forall(h in Hatreds)(

p1[h] = pos[h1[h]] /\

p2[h] = pos[h2[h]] /\

sameside[h] = bool2int(p1[h] <= 6 <-> p2[h] <= 6) /\

cost[h] = sameside[h] * abs(p1[h] - p2[h]) +

(1 - sameside[h]) * (abs(13 - p1[h] - p2[h]) + 1));

solve maximize sum(h in Hatreds)(cost[h]);

output [name[g]++" " | s in Seats,g in Guests where fix(pos[g]) == s]

++ ["\n"];

Figure 22: Planning wedding seating using enumerated types (wedding.mzn)

38

http://www.minizinc.org/downloads/tutorial-examples-latest/wedding.mzn

The wedding table

1 2 3 4 5 6

789101112

ted bride groom rona bob carol

ronaliceedbridesmaidbestmanclara

Figure 23: Seating arrangement at the wedding table

ted bride groom rona bob carol ron alice ed bridesmaid bestman clara

==========

The resulting table placement is illustrated in Figure 23 where the lines indicate hatreds. The

total distance is 22.

4 Predicates

Predicates in MiniZinc allow us to capture complex constraints of our model in a succinct way. Pred-

icates in MiniZinc are used to model with both predefined global constraints, and to capture and

define new complex constraints by the modeller.

4.1 Global Constraints

There are many global constraints defined in MiniZinc for use in modelling. The definitive list is to

be found in the documentation for the release, as the list is slowly growing. Below we discuss some

of the most important global constraints

4.1.1 Alldifferent

The alldifferent constraint takes an array of variables and constrains them to take different values.

A use of the alldifferent has the form

alldifferent(array[int] of var int: x)

that is the argument is array of integer variables.

Alldifferent is one of the most studied and used global constraints in constraint programming.

It is used to define assignment subproblems, and efficient global propagators for alldifferent ex-

ist send-more-money.mzn (Figure 11) and sudoku.mzn (Figure 12) are examples of models using

alldifferent.

4.1.2 Cumulative

The cumulative constraint is used for describing cumulative resource usage.

39

MOVING ≡ [DOWNLOAD]

include "cumulative.mzn";

int: n; % number of objects;

set of int: OBJECTS = 1..n;

array[OBJECTS] of int: duration; % duration to move

array[OBJECTS] of int: handlers; % number of handlers required

array[OBJECTS] of int: trolleys; % number of trolleys required

int: available_handlers;

int: available_trolleys;

int: available_time;

array[OBJECTS] of var 0..available_time: start;

var 0..available_time: end;

constraint cumulative(start, duration, handlers, available_handlers);

constraint cumulative(start, duration, trolleys, available_trolleys);

constraint forall(o in OBJECTS)(start[o] +duration[o] <= end);

solve minimize end;

output ["start = ", show(start), "\nend = ", show(end), "\n"];

Figure 24: Model for moving furniture using cumulative (moving.mzn).

cumulative(array[int] of var int: s, array[int] of var int: d,

array[int] of var int: r, var int: b)

Requires that a set of tasks given by start times s, durations d, and resource requirements r, never

require more than a global resource bound b at any one time.

The model in Figure 24 finds a schedule for moving furniture so that each piece of furniture

has enough handlers (people) and enough trolleys available during the move. The available time,

handlers and trolleys are given, and the data gives for each object the move duration, the number of

handlers and the number of trolleys required. Using the data shown in Figure 25, the command

$ mzn-g12fd moving.mzn moving.dzn

may result in the output

start = [0, 60, 60, 90, 120, 0, 15, 105]

end = 140

==========

40

http://www.minizinc.org/downloads/tutorial-examples-latest/moving.mzn

MOVING.DZN ≡ [DOWNLOAD]

n = 8;

% piano, fridge, double bed, single bed, wardrobe, chair, chair, table

duration = [60, 45, 30, 30, 20, 15, 15, 15];

handlers = [3, 2, 2, 1, 2, 1, 1, 2];

trolleys = [2, 1, 2, 2, 2, 0, 0, 1];

available_time = 180;

available_handlers = 4;

available_trolleys = 3;

Figure 25: Data for moving furniture using cumulative (moving.dzn).

(a)

0 60 12030 90

piano

single bed

chair chair

0

1

2

3

4

fridge

double bed

ward
robe

table

150

(b)

0 60 12030 90

piano

single bed

0

1

2

3

fridge

double bed
ward
robetable

150

Figure 26: Histograms of usage of (a) handlers and (b) trolleys in the move.

Figure 26(a) and Figure 26(b) show the requirements for handlers and trolleys at each time in the

move for this solution.

4.1.3 Table

The table constraint enforces that tuple of variables takes a value from a set of tuples. Since there

are no tuples in MiniZinc this is encoded using arrays. The usage of table has one of the forms

table(array[int] of var bool: x, array[int, int] of bool: t)

table(array[int] of var int: x, array[int, int] of int: t)

depending on whether the tuples are Boolean or integer. Enforces x ∈ t where we consider x and

each row in t to be a tuple, and t and to be a set of tuples.

The model in Figure 27 searches for balanced meals. Each meal item has a name (encoded as an

integer), a kilojoule count, protein in grams, salt in milligrams, and fat in grams, as well as cost in

cents. The relationship between these items is encoded using a table constraint. The model searches

41

http://www.minizinc.org/downloads/tutorial-examples-latest/moving.dzn

MEAL ≡ [DOWNLOAD]

% Planning a balanced meal

include "table.mzn";

int: min_energy;

int: min_protein;

int: max_salt;

int: max_fat;

set of FOODS: desserts;

set of FOODS: mains;

set of FOODS: sides;

set of int: FEATURES = 1..6;

int: name = 1; int: energy = 2; int: protein = 3;

int: salt = 4; int: fat = 5; int: cost = 6;

int: nf; % number of foods

set of int: FOODS = 1..nf;

array[FOODS] of string: n; % food names

array[FOODS,FEATURES] of int: dd; % food database

array[FEATURES] of var int: main;

array[FEATURES] of var int: side;

array[FEATURES] of var int: dessert;

var int: budget;

constraint main[name] in mains;

constraint side[name] in sides;

constraint dessert[name] in desserts;

constraint table(main, dd);

constraint table(side, dd);

constraint table(dessert, dd);

constraint main[energy] + side[energy] + dessert[energy] >=min_energy;

constraint main[protein]+side[protein]+dessert[protein] >=min_protein;

constraint main[salt] + side[salt] + dessert[salt] <= max_salt;

constraint main[fat] + side[fat] + dessert[fat] <= max_fat;

constraint budget = main[cost] + side[cost] + dessert[cost];

solve minimize budget;

output ["main = ",n[fix(main[name])],", side = ",n[fix(side[name])],

", dessert = ",n[fix(dessert[name])],", cost = ",show(budget), "\n"];

Figure 27: Model for meal planning using table constraint (meal.mzn).

42

http://www.minizinc.org/downloads/tutorial-examples-latest/meal.mzn

MEAL.DZN ≡ [DOWNLOAD]

nf = 9;

n = ["icecream","banana","chocolate cake","lasagna",

"steak","rice","chips","brocolli","beans"];

dd = [| 1, 1200, 50, 10, 120, 400 % icecream

| 2, 800, 120, 5, 20, 120 % banana

| 3, 2500, 400, 20, 100, 600 % chocolate cake

| 4, 3000, 200, 100, 250, 450 % lasagna

| 5, 1800, 800, 50, 100, 1200 % steak

| 6, 1200, 50, 5, 20, 100 % rice

| 7, 2000, 50, 200, 200, 250 % chips

| 8, 700, 100, 10, 10, 125 % brocolli

| 9, 1900, 250, 60, 90, 150 |]; % beans

min_energy = 3300;

min_protein = 500;

max_salt = 180;

max_fat = 320;

desserts = {1,2,3};

mains = {4,5,9};

sides = {6,7,8};

Figure 28: Data for meal planning defining the table used (meal.dzn).

for a minimal cost meal which has a minimum kilojoule count min_ener g y , a minimum amount of

protein min_protein, maximum amount of salt max_sal t and fat max_ f at.

4.1.4 Regular

The regular constraint is used to enforce that a sequence of variables takes a value defined by a

finite automaton. The usage of regular has the form

regular(array[int] of var int: x, int: Q, int: S,

array[int,int] of int: d, int: q0, set of int: F)

It constrains that the sequence of values in array x (which must all be in the range 1..S) is accepted

by the DFA of Q states with input 1..S and transition function d (which maps < 1..Q, 1..S > to 0..Q)

and initial state q0 (which must be in 1..Q) and accepting states F (which all must be in 1..Q). State

0 is reserved to be an always failing state.

Consider a nurse rostering problem. Each nurse is scheduled for each day as either: (d) on day

shift, (n) on night shift, or (o) off. In each four day period a nurse must have at least one day off, and

no nurse can be scheduled for 3 night shifts in a row. This can be encoded using the incomplete DFA

43

http://www.minizinc.org/downloads/tutorial-examples-latest/meal.dzn

//ONMLHIJK1
d //

n

""❉
❉❉

❉❉
❉❉

❉❉
❉❉

o
��

ONMLHIJK2
{d,n} //

o
xx ONMLHIJK4

{d,n} //

o
yy ONMLHIJK6

o

zz

ONMLHIJK3

d

<<③③③③③③③③③③③
n //

o

VV

ONMLHIJK5

d

<<③③③③③③③③③③③

o

TT

Figure 29: A DFA determining correct rosters.

shown in Figure 29. We can encode this DFA as having start state 1, final states 1 .. 6, and transition

function
d n o

1 2 3 1

2 4 4 1

3 4 5 1

4 6 6 1

5 6 0 1

6 0 0 1

Note that state 0 in the table indicates an error state. The model shown in Figure 30 finds a schedule

for num_nurses nurses over num_da ys days, where we require req_da y nurses on day shift each

day, and req_night nurses on night shift, and that each nurse takes at least min_night night shifts.

Running the command

$ mzn-g12fd nurse.mzn nurse.dzn

finds a 10 day schedule for 7 nurses, requiring 3 on each day shift and 2 on each night shift, with a

minimum 2 night shifts per nurse. A possible output is

d d d - d d d - n n

d d d - d d d - n n

d d - d d n - n d d

n n - d n d - d d d

n - d n n - d d d -

- n n d - n n d - d

- - n n - - n n - -

4.2 Defining Predicates

One of the most powerful modelling features of MiniZinc is the ability for the modeller to define their

own high-level constraints. This allows them to abstract and modularise their model. It also allows

re-use of constraints in different models and allows the development of application specific libraries

defining the standard constraints and types.

We start with a simple example, revisiting the job shop scheduling problem from the previous

section. The model is shown in Figure 31. The item of interest is the predicate item:

44

NURSE ≡ [DOWNLOAD]

% Simple nurse rostering

include "regular.mzn";

int: num_nurses;

set of int: NURSES = 1..num_nurses;

int: num_days;

set of int: DAYS = 1..num_days;

int: req_day;

int: req_night;

int: min_night;

int: S = 3;

set of int: SHIFTS = 1..S;

int: d = 1; int: n = 2; int: o = 3;

array[SHIFTS] of string: name = ["d","n","-"];

int: Q = 6; int: q0 = 1; set of int: STATES = 1..Q;

array[STATES,SHIFTS] of int: t =

[| 2, 3, 1 % state 1

| 4, 4, 1 % state 2

| 4, 5, 1 % state 3

| 6, 6, 1 % state 4

| 6, 0, 1 % state 5

| 0, 0, 1|]; % state 6

array[NURSES,DAYS] of var SHIFTS: roster;

constraint forall(j in DAYS)(

sum(i in NURSES)(bool2int(roster[i,j] == d)) == req_day /\

sum(i in NURSES)(bool2int(roster[i,j] == n)) == req_night

);

constraint forall(i in NURSES)(

regular([roster[i,j] | j in DAYS], Q, S, t, q0, STATES) /\

sum(j in DAYS)(bool2int(roster[i,j] == n)) >= min_night

);

solve satisfy;

output [name[fix(roster[i,j])]

++ if j==num_days then "\n" else " " endif

| i in NURSES, j in DAYS];

Figure 30: Model for nurse rostering using regular constraint (nurse.mzn).

45

http://www.minizinc.org/downloads/tutorial-examples-latest/nurse.mzn

JOBSHOP2 ≡ [DOWNLOAD]

int: jobs; % no of jobs

int: tasks; % no of tasks per job

array [1..jobs,1..tasks] of int: d; % task durations

int: total = sum(i in 1..jobs, j in 1..tasks)

(d[i,j]); % total duration

int: digs = ceil(log(10.0,int2float(total))); % digits for output

array [1..jobs,1..tasks] of var 0..total: s; % start times

var 0..total: end; % total end time

◮ NOOVERLAP

constraint %% ensure the tasks occur in sequence

forall(i in 1..jobs) (

forall(j in 1..tasks-1)

(s[i,j] + d[i,j] <= s[i,j+1]) /\

s[i,tasks] + d[i,tasks] <= end

);

constraint %% ensure no overlap of tasks

forall(j in 1..tasks) (

forall(i,k in 1..jobs where i < k) (

no_overlap(s[i,j], d[i,j], s[k,j], d[k,j])

)

);

solve minimize end;

output ["end = ", show(end), "\n"] ++

[show_int(digs,s[i,j]) ++ " " ++

if j == tasks then "\n" else "" endif |

i in 1..jobs, j in 1..tasks];

Figure 31: Model for job shop scheduling using predicates (jobshop2.mzn).

NOOVERLAP ≡

predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =

s1 + d1 <= s2 \/ s2 + d2 <= s1;

This defines a new constraint that enforces that a task with start time s1 and duration d1 does

not overlap with a task with start time s2 and duration d2. This can now be used inside the model

anywhere any other Boolean expression (involving decision variables) can be used.

As well as predicates the modeller can define new constraints that only involve parameters. Unlike

46

http://www.minizinc.org/downloads/tutorial-examples-latest/jobshop2.mzn

predicates these can be used inside the test of a conditional expression. These are defined using the

keyword test. For example

test even(int:x) = x mod 2 = 0;

4.3 Reflection Functions

To help write generic tests and predicates, various reflection functions return information about array

index sets, var set domains and decision variable ranges. Those for index sets are index_set(〈1-D

array〉), index_set_1of2(〈2-D array〉), index_set_2of2(〈2-D array〉) and so on for higher di-

mensional arrays.

A better model of the job shop conjoins all the non-overlap constraints for a single machine into

a single disjunctive constraint. An advantage of this approach is that while we may initially model

this simply as a conjunction of non-overlap, if the underlying solver has a better approach to solving

disjunctive constraints we can use that instead, with minimal changes to our model. The model is

shown in Figure 32.

The disjunctive constraint takes an array of start times for each task and an array of their

durations and makes sure that only one task is active at any one time. We define the disjunctive

constraint as a predicate with signature

predicate disjunctive(array[int] of var int:s, array[int] of int:d);

We can use the disjunctive constraint to define the non-overlap of tasks as shown in Figure 32.

We assume a definition for the disjunctive predicate is given by the file disjunctive.mzn which is

included in the model. If the underlying system supports disjunctive directly, it will include a file

disjunctive.mzn in its globals directory (with contents just the signature definition above). If the

system we are using does not support disjunctive directly we can give our own definition by creat-

ing the file disjunctive.mzn. The simplest implementation simply makes use of the no_overlap

predicate defined above. A better implementation is to make use of a global cumulative con-

straint assuming it is supported by the underlying solver. Figure 33 shows an implementation of

disjunctive. Note how we use the index_set reflection function to (a) check that the arguments

to disjunctive make sense, and (b) construct the array of resource utilisations of the appropriate

size for cumulative. Note also that we use a ternary version of assert here

Predicate definitions
Predicates are defined by a statement of the form

predicate 〈pred-name〉 (〈arg-def〉, . . . , 〈arg-def〉) = 〈bool-exp〉

The 〈pred-name〉 must be a valid MiniZinc identifier, and each 〈arg-def〉 is a valid MiniZinc type

declaration. One relaxation of argument definitions is that the index types for arrays can be

unbounded written int.

We also introduce a new form of the assert command for use in predicates.

assert (〈bool-exp〉, 〈string-exp〉, 〈exp〉)

The type of the assert expression is the same as the type of the last argument. The assert

expression checks whether the first argument is false, and if so prints the second argument

string. If the first argument is true it returns the third argument.

47

JOBSHOP3 ≡ [DOWNLOAD]

include "disjunctive.mzn";

int: jobs; % no of jobs

int: tasks; % no of tasks per job

array [1..jobs,1..tasks] of int: d; % task durations

int: total = sum(i in 1..jobs, j in 1..tasks)

(d[i,j]); % total duration

int: digs = ceil(log(10.0,int2float(total))); % digits for output

array [1..jobs,1..tasks] of var 0..total: s; % start times

var 0..total: end; % total end time

constraint %% ensure the tasks occur in sequence

forall(i in 1..jobs) (

forall(j in 1..tasks-1)

(s[i,j] + d[i,j] <= s[i,j+1]) /\

s[i,tasks] + d[i,tasks] <= end

);

constraint %% ensure no overlap of tasks

forall(j in 1..tasks) (

disjunctive([s[i,j] | i in 1..jobs], [d[i,j] | i in 1..jobs])

);

solve minimize end;

output ["end = ", show(end), "\n"] ++

[show_int(digs,s[i,j]) ++ " " ++

if j == tasks then "\n" else "" endif |

i in 1..jobs, j in 1..tasks];

Figure 32: Model for job shop scheduling using disjunctive predicate (jobshop3.mzn).

Note that assert expressions are lazy in the third argument, that is if the first argument is false

they will not be evaluated. Hence they can be used for checking

predicate lookup(array[int] of var int:x, int: i, var int: y) =

assert(i in index_set(x), "index out of range in lookup"

y = x[i]

);

This code will not evaluate x[i] if i is out of the range of the array x .

48

http://www.minizinc.org/downloads/tutorial-examples-latest/jobshop3.mzn

DISJUNCTIVE ≡ [DOWNLOAD]

include "cumulative.mzn";

predicate disjunctive(array[int] of var int:s, array[int] of int:d) =

assert(index_set(s) == index_set(d), "disjunctive: " ++

"first and second arguments must have the same index set",

cumulative(s, d, [1 | i in index_set(s)], 1)

);

Figure 33: Defining a disjunctive predicate using cumulative (disjunctive.mzn).

4.4 Local Variables

It is often useful to introduce local variables in a test or predicate. The let expression allows you to

do so. It can be used to introduce both decision variables and parameters, but parameters must be

initialised. For example:

var s..e: x;

let {int: l = s div 2, int: u = e div 2, var l .. u: y} in x = 2*y

introduces parameters l and u and variable y . While most useful in predicate and test definitions, let

expressions can also be used in other expressions, for example for eliminating common subexpres-

sions:

constraint let { var int: s = x1 + x2 + x3 + x4 } in

l <= s /\ s <= u;

Local variables can be used anywhere and can be quite useful, for simplifying complex expres-

sions. Figure 34 gives a revised version of the wedding model, using local variables to define the

objective function, rather than adding lots of variables to the model explicitly.

One limitation is that predicates containing decision variables that are not initialised in the dec-

laration cannot be used inside a negative context. The following is illegal

predicate even(var int:x) =

let { var int: y } in x = 2 * y;

constraint not even(z);

Let expressions
Local variables can be introduced in any expression with a let expression of the form:

let { 〈var-dec〉, . . . 〈var-dec〉 } in 〈exp〉

The variable declarations 〈var-dec〉 can contain both decision variables and parameters. Param-

eters must be initialised.

Note that local variables cannot occur in predicates that appear in a negative context

49

http://www.minizinc.org/downloads/tutorial-examples-latest/disjunctive.mzn

WEDDING2 ≡ [DOWNLOAD]

set of int: Guests = 1..12;

int: bride = 1; int: groom = 2; int: bestman = 3;

int: bridesmaid = 4; int: bob = 5; int: carol = 6;

int: ted = 7; int: alice = 8; int: ron = 9;

int: rona = 10; int: ed = 11; int: clara = 12;

array[Guests] of string: name = ["bride","groom","bestman",

"bridesmaid","bob","carol","ted","alice","ron","rona","ed","clara"];

set of int: Seats = 1..12;

set of int: Hatreds = 1..5;

array[Hatreds] of Guests: h1 = [groom, carol, ed, bride, ted];

array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];

set of int: Males = {groom, bestman, bob, ted, ron,ed};

set of int: Females = {bride, bridesmaid, carol, alice, rona, clara};

array[Guests] of var Seats: pos;

include "alldifferent.mzn";

constraint alldifferent(pos);

constraint forall(g in Males)(pos[g] mod 2 == 1);

constraint forall(g in Females)(pos[g] mod 2 == 0);

constraint not (pos[ed] in {1,6,7,12});

constraint abs(pos[bride] - pos[groom]) <= 1 /\

(pos[bride] <= 6 <-> pos[groom] <= 6);

solve maximize sum(h in Hatreds)(

let { var Seats: p1 = pos[h1[h]],

var Seats: p2 = pos[h2[h]],

var 0..1: same = bool2int(p1 <= 6 <-> p2 <= 6) } in

same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1));

output [name[g]++" " | s in Seats, g in Guests where fix(pos[g]) == s]

++ ["\n"];

Figure 34: Using local variables to define a complex objective function (wedding2.mzn)

50

http://www.minizinc.org/downloads/tutorial-examples-latest/wedding2.mzn

REFLECTION ≡ [DOWNLOAD]

var -10..10: x;

constraint x in 0..4;

int: y = lb(x);

set of int: D = dom(x);

solve satisfy;

output ["y = ", show(y), "\nD = ", show(D), "\n"];

Figure 35: Using reflection predicates (reflection.mzn)

4.5 Domain Reflection Functions

Other important reflection functions are those that allow us to access the domains of variables. The

expression lb(x) returns a value that is lower than or equal to any value that x may take in a solution

of the problem. Usually it will just be the declared lower bound of x . If x is declared as a non-finite

type, e.g. simply var int then it is an error. Similarly the expression dom(x) returns a (non-strict)

superset of the possible values of x in any solution of the problem. Again it is usually the declared

values, and again if it is not declared as finite then there is an error.

For example, the model show in Figure 35 may output

y = -10

D = {-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10}

or

y = 0

D = {0, 1, 2, 3, 4}

or any answer with −10≤ y ≤ 0 and {0, . . . , 4} ⊆ D ⊆ {−10, . . . , 10}.

Variable domain reflection expressions should be used in a manner where they are correct for any

safe approximations, but note this is not checked! For example the additional code

var -10..10: z;

constraint z <= y;

is not a safe usage of the domain information. Since using the tighter (correct) approximation leads

to more solutions than the weaker initial approximation.

51

http://www.minizinc.org/downloads/tutorial-examples-latest/reflection.mzn

Domain reflection
There are reflection functions to interrogate the possible values of expressions containing vari-

ables:

• dom (〈exp〉): returns a safe approximation to the possible values of the expression.

• lb (〈exp〉): returns a safe approximation to the lower bound value of the expression.

• ub (〈exp〉): returns a safe approximation to the upper bound value of the expression.

The expressions for lb and ub can only be of types int, bool, float or set of int. For dom the

type cannot be float. If one of the variables appearing in ex p has a non-finite declared type

(e.g. var int or var float type) then an error can occur.

There are also versions that work directly on arrays of expressions (with similar restrictions):

• dom_array (〈array-exp〉): returns a safe approximation to the union of all possible

values of the expressions appearing in the array.

• lb_array (〈array-exp〉): returns a safe approximation to the lower bound of all expres-

sions appearing in the array.

• ub_array (〈array-exp〉): returns a safe approximation to the upper bound of all expres-

sions appearing in the array.

The combinations of predicates, local variables and domain reflection allows the definition of

complex global constraints by decomposition. We can define the time based decomposition of the

cumulative constraint using the code shown in Figure 36.

The decomposition uses lb and ub to determine the set of times times over which tasks could

range. It then asserts for each time t in times that the sum of resources for the active tasks at time t

is less than the bound b.

4.6 Scope

It is worth briefly mentioning the scope of declarations in MiniZinc. MiniZinc has a single namespace,

so all variables appearing in declarations are visible in every expression in the model. MiniZinc

introduces locally scoped variables in a number of ways:

• as iterator variables in comprehension expressions

• using let expressions

• as predicate arguments

Any local scoped variable overshadows the outer scoped variables of the same name.

For example, in the model shown in Figure 37 the x in -x <= y is the global x, the x in even(x)

is the iterator x in 1..u, while the y in the disjunction is the second argument of the predicate.

5 Search

By default in MiniZinc there is no declaration of how we want to search for solutions. This leaves

the search completely up to the underlying solver. But sometimes, particularly for combinatorial

52

CUMULATIVE ≡ [DOWNLOAD]

%--%

% Requires that a set of tasks given by start times ’s’,

% durations ’d’, and resource requirements ’r’,

% never require more than a global

% resource bound ’b’ at any one time.

% Assumptions:

% - forall i, d[i] >= 0 and r[i] >= 0

%--%

predicate cumulative(array[int] of var int: s,

array[int] of var int: d,

array[int] of var int: r, var int: b) =

assert(index_set(s) == index_set(d) /\

index_set(s) == index_set(r),

"cumulative: the array arguments must have identical index sets",

assert(lb_array(d) >= 0 /\ lb_array(r) >= 0,

"cumulative: durations and resource usages must be non-negative",

let {

set of int: times =

lb_array(s) ..

max([ub(s[i]) + ub(d[i]) | i in index_set(s)])

}

in

forall(t in times) (

b >= sum(i in index_set(s)) (

bool2int(s[i] <= t /\ t < s[i] + d[i]) * r[i]

)

)

)

);

Figure 36: Defining a cumulative predicate by decomposition (cumulative.mzn).

integer problems, we may want to specify how the search should be undertaken. This requires us

to communicate to the solver a search strategy. Note that the search strategy is not really part

of the model. Indeed it is not required that each solver implements all possible search strategies.

MiniZinc uses a consistent approach to communicating extra information to the constraint solver

using annotations.

53

http://www.minizinc.org/downloads/tutorial-examples-latest/cumulative.mzn

SCOPE ≡ [DOWNLOAD]

int: x = 3;

int: y = 4;

predicate smallx(var int:y) = -x <= y /\ y <= x;

predicate p(int: u, var bool: y) =

exists(x in 1..u)(y \/ smallx(x));

constraint p(x,false);

solve satisfy;

Figure 37: A model for illustrating scopes of variables (scope.mzn)

5.1 Finite Domain Search

Search in a finite domain solver involves examining the remaining possible values of variables and

choosing to constrain some variables further. The search then adds a new constraint that restricts the

remaining values of the variable (in effect guessing where the solution might lie), and then applies

propagation to determine what other values are still possible in solutions. In order to guarantee

completeness, the search leaves another choice which is the negation of the new constraint. The

search ends either when the finite domain solver detects that all constraints are satisfied, and hence

a solution has been found, or that the constraints are unsatisfiable. When unsatisfiability is detected

the search must proceed down a different set of choices. Typically finite domain solvers use depth

first search where they undo the last choice made and then try to make a new choice.

NQUEENS ≡ [DOWNLOAD]

int: n;

array [1..n] of var 1..n: q; % queen is column i is in row q[i]

include "alldifferent.mzn";

constraint alldifferent(q); % distinct rows

constraint alldifferent([q[i] + i | i in 1..n]); % distinct diagonals

constraint alldifferent([q[i] - i | i in 1..n]); % upwards+downwards

◮ SEARCH

output [if fix(q[j]) == i then "Q" else "." endif ++

if j == n then "\n" else "" endif | i,j in 1..n]

Figure 38: Model for n-queens (nqueens.mzn).

A simple example of a finite domain problem is the n queens problem which requires that we

place n queens on an n× n chessboard so that none can attack another. The variable q[i] records in

which row the queen in column i is placed. The alldifferent constraints ensure that no two queens

54

http://www.minizinc.org/downloads/tutorial-examples-latest/scope.mzn
http://www.minizinc.org/downloads/tutorial-examples-latest/nqueens.mzn

are on the same row, or diagonal. A typical (partial) search tree for n = 9 is illustrated in the left

of Figure 39. We first set q[1] = 1, this removes values from the domains of other variables, so that

e.g. q[2] cannot take the values 1 or 2. We then set q[2] = 3, this further removes values from the

domains of other variables. We set q[3] = 5 (its earliest possible value). The state of the chess board

after these three decisions is shown in Figure 39(a) where the queens indicate the position of the

queens fixed already and the stars indicate positions where we cannot place a queen since it would

be able to take an already placed queen.

A search strategy determines which choices to make. The decisions we have made so far follow

the simple strategy of picking the first variable which is not fixed yet, and try to set it to its least

possible value. Following this strategy the next decision would be q[4] = 7. An alternate strategy for

variable selection is to choose the variable whose current set of possible values (domain) is smallest.

Under this so called first-fail variable selection strategy the next decision would be q[6] = 4. If we

make this decision, then initially propagation removes the additional values shown in Figure 39(b).

But this leaves only one value for q[8], q[8] = 7, so this is forced, but then this leaves only one

possible value for q[7] and q[9], that is 2. Hence a constraint must be violated. We have detected

unsatisfiability, and the solver must backtrack undoing the last decision q[6] = 4 and adding its

negation q[6] 6= 4 (leading us to state (c) in the tree in Figure 39) which forces q[6] = 8. This

removes some values from the domain and then we again reinvoke the search strategy to decide

what to do.

Many finite domain searches are defined in this way: choose a variable to constrain further, and

then choose how to constrain it further.

5.2 Search Annotations

Search annotations in MiniZinc specify how to search in order to find a solution to the problem. The

annotation is attached to the solve item, after the keyword solve. The search annotation

SEARCH ≡

solve :: int_search(q, first_fail, indomain_min, complete)

satisfy;

appears on the solve item. Annotations are attached to parts of the model using the connector ::.

This search annotation means that we should search by selecting from the array of integer variables

q, the variable with the smallest current domain (this is the first_fail rule), and try setting it

to its smallest possible value (indomain_min value selection), looking across the entire search tree

(complete search).

55

q[6] != 4
q[6]=4

q[3] != 5q[3] = 5

q[2] != 3q[2] = 3

q[1]=1 q[1] != 1

a

b c

q[1] q[2] q[3] q[4] q[5] q[6] q[7] q[8] q[9]

1

2

3

4

5

6

7

8

9

(a)

q[1] q[2] q[3] q[4] q[5] q[6] q[7] q[8] q[9]

1

2

3

4

5

6

7

8

9

(b)

Figure 39: Partial search trees for 9 queens: (a) the state after the addition of q[1] = 1,

q[2] = 4, q[3] = 5 (b) the initial propagation on adding further q[6] = 4.

56

Basic search annotations
There are four basic search annotations corresponding to different basic variable types:

• int_search(variables, varchoice, constrainchoice, strategy) where variables

is an one dimensional array of var int, varchoice is a variable choice annotation dis-

cusses below, constrainchoice is a choice of how to constrain a variable, discussed below,

and strategy is a search strategy which we will assume for now is complete.

• bool_search(variables, varchoice, constrainchoice, strategy) where variables

is an one dimensional array of var bool and the rest are as above.

• set_search(variables, varchoice, constrainchoice, strategy) where variables

is an one dimensional array of var set of int and the rest are as above.

Example variable choice annotations are: input_order choose in order from the array,

first_fail choose the variable with the smallest domain size, and smallest choose the vari-

able with the smallest value in its domain.

Example ways to constraint a variable are: indomain_min assign the variable its smallest domain

value, indomain_median assign the variable its median domain value, indomain_random assign

the variable a random value from its domain, and indomain_split bisect the variables domain

excluding the upper half.

Strategy is almost always complete for complete search. For a complete list of variable and

constraint choice annotations see the FlatZinc specification in the MiniZinc reference documen-

tation.

We can construct more complex search strategies using search constructor annotations. There is

only one such annotation at present.

seq_search([search_ann, ..., search_ann])

The sequential search constructor first undertakes the search given by the first annotation in its list,

when all variables in this annotation are fixed it undertakes the second search annotation, etc until

all search annotations are complete.

Consider the jobshop scheduling model shown in Figure 32. We could replace the solve item with

solve :: seq_search([

int_search(s, smallest, indomain_min, complete),

int_search([end], input_order, indomain_min, complete)])

minimize end

which tries to set start times s by choosing the job that can start earliest and setting it to that time.

When all start times are complete the end time end may not be fixed. Hence we set it to its minimal

possible value.

5.3 Annotations

Annotations are a first class object in MiniZinc. We can declare new annotations in a model, and

declare and assign to annotation variables.

57

NQUEENS-ANN ≡ [DOWNLOAD]

annotation bitdomain(int:nwords);

include "alldifferent.mzn";

int: n;

array [1..n] of var 1..n: q :: bitdomain(n div 32);

constraint alldifferent(q) :: domain;

constraint alldifferent([q[i] + i | i in 1..n]) :: domain;

constraint alldifferent([q[i] - i | i in 1..n]) :: domain;

ann: search_ann;

solve :: search_ann satisfy;

output [if fix(q[j]) == i then "Q" else "." endif ++

if j == n then "\n" else "" endif | i,j in 1..n]

Figure 40: Annotated model for n-queens (nqueens-ann.mzn).

Annotations
Annotations have a type ann. You can declare an annotation parameter (with optional assign-

ment)

ann : 〈ident〉 [= 〈ann-expr〉] ;

and assign to an annotation variable just as any other parameter.

Expressions, variable declarations, and solve items can all be annotated using the :: operator.

We can declare a new annotation using the annotation item

annotation 〈annotation-name〉(〈arg-def〉, . . . , 〈arg-def〉) ;

The program in Figure 40 illustrates the use of annotation declarations, annotations and annota-

tion variables. We declare a new annotation bitdomain which is meant to tell the solver that vari-

ables domains should be represented via bit arrays of size nwords. The annotation is attached to the

declarations of the variables q. Each of the alldifferent constraints is annotated with the built in

annotation domain which instructs the solver to use the domain propagating version of alldifferent

if it has one. An annotation variable search_ann is declared and used to define the search strategy.

We can give the value to the search strategy in a separate data file.

Example search annotations might be the following (where we imagine each line is in a separate

data file)

58

http://www.minizinc.org/downloads/tutorial-examples-latest/nqueens-ann.mzn

search_ann = int_search(q, input_order, indomain_min, complete);

search_ann = int_search(q, input_order, indomain_median, complete);

search_ann = int_search(q, first_fail, indomain_min, complete);

search_ann = int_search(q, first_fail, indomain_median, complete);

The first just tries the queens in order setting them to the minimum value, the second tries the queens

variables in order, but sets them to their median value, the third tries the queen variable with smallest

domain and sets it to the minimum value, and the final strategy tries the queens variable with smallest

domain setting it to its median value.

Different search strategies can make a significant difference in how easy it is to find solutions.

A small comparison of the number of choices made to find the first solution of the n-queens prob-

lems using the 4 different search strategies is shown in the table below (where — means more than

100,000 choices). Clearly the right search strategy can make a significant difference.

n input-min input-median ff-min ff-median

10 28 15 16 20

15 248 34 23 15

20 37330 97 114 43

25 7271 846 2637 80

30 — 385 1095 639

35 — 4831 — 240

40 — — — 236

6 Effective Modelling Practices in MiniZinc

MiniZinc is a complex enough modelling language that there can be multiple ways to model the same

problem, some of which generate models which are efficient to solve, and some of which are not.

In general it is very hard to tell a priori which models are the most efficient for solving a particular

problem, and indeed it may critically depend on the underlying solver used, and search strategy. In

this chapter we concentrate on modelling practices that avoid inefficiency in generating models and

generated models.

6.1 Variable Bounds

Finite domain propagation engines, which are the principle type of solver targeted by MiniZinc are

more effective the tighter the bounds on the variables involved. They can also behave badly with

problems which have subexpressions that take large integer values, since they may implicitly limit

the size of integer variables.

The result of executing

$ mzn-g12fd unbounded.mzn

is the error message

evaluation of model would result in integer overflow.

59

UNBOUNDED ≡ [DOWNLOAD]

var int: a;

var int: b;

constraint 200*a + 150 * b <= 4000;

constraint 100*a + 250 * b >= 0;

solve satisfy;

output ["a = ",show(a), " b = ", show(b), "\n"];

Figure 41: A model with unbounded integers (unbounded.mzn).

GROCERY ≡ [DOWNLOAD]

var 0..711: item1;

var 0..711: item2;

var 0..711: item3;

var 0..711: item4;

constraint item1 + item2 + item3 + item4 == 711;

constraint item1 * item2 * item3 * item4 == 711 * 100 * 100 * 100;

% symmetry breaking

constraint item1 <= item2 /\ item2 <= item3 /\ item3 <= item4;

solve satisfy;

output ["{", show(item1), ",", show(item2), ",", show(item3), ",",

show(item4),"}\n"];

Figure 42: A model with large intermediate values (grocery.mzn).

This is because the var int variables get default bounds −1,000,000..1, 000,000 leading to inter-

mediate expressions which are too big to be represented in the default bounds. Changing the variable

declarations to var -1000..1000 will lead to solutions being found immediately. Note that using the

mixed integer solver

$ mzn-g12mip unbounded.mzn

immediately returns an answer a = 0 b = 0.

Note that even models where all variables are bounded, may introduce intermediate expressions

that are too large for the solver.

60

http://www.minizinc.org/downloads/tutorial-examples-latest/unbounded.mzn
http://www.minizinc.org/downloads/tutorial-examples-latest/grocery.mzn

The grocery problem shown in Figure 42 builds a large product, which requires bigger bounds

than the default, even though all the (declared) variables are tightly bounded. This may result in the

solver detecting failure since there is not solution in the default bounds. Executing

$ mzn-g12fd grocery.mzn

reports

mzn2fzn:

error:

grocery.mzn:7

In constraint.

In ’*’ expression.

the bounds on this expression exceed what can be represented

on a 32 bit machine.

which shows that flattening the large product constraint would result in integer overflow.

Bounding variables
Always try to use bounded variables in models. When using let declarations to introduce

new variables, always try to define them with correct and tight bounds. This will make your

model more efficient, and avoid the possibility of unexpected overflows. One exception is when

you introduce a new variable which is immediately defined as equal to an expression. Usually

MiniZinc will be able to infer effective bounds from the expression.

6.2 Unconstrained Variables

Sometimes when modelling it is easier to introduce more variables than actually required to model

the problem.

Consider the model for Golomb rulers shown in Figure 43. A Golomb ruler of n marks is one

where the absolute differences between any two marks are different. It creates a two dimensional

array of difference variables, but only uses those of the form diff[i,j] where i > j. Running the

model as

$ mzn-g12fd golomb.mzn -D "n = 4; m = 6;"

results in output

marks = [0, 2, 5, 6]

and everything seems fine with the model. But if we ask for all solutions using

$ mzn-g12fd -a golomb.mzn -D "n = 4; m = 6;"

we are presented with a never ending list of the same solution!

What is going on? In order for the finite domain solver to finish it needs to fix all variables,

including the variables diff[i,j] where i ≤ j, which means there are countless ways of generating

a solution, simply by changing these variables to take arbitrary values.

We can avoid problems with unconstrained variables, by modifying the model so that they are

fixed to some value. For example replacing the lines marked (diff) in Figure 43 to

61

GOLOMB ≡ [DOWNLOAD]

include "alldifferent.mzn";

int: n; % number of marks on ruler

int: m; % max length of ruler

array[1..n] of var 0..m: mark;

array[1..n,1..n] of var 0..m: diffs;

constraint mark[1] = 0;

constraint forall (i in 1..n-1) (mark[i] < mark[i+1]);

constraint forall (i,j in 1..n where i > j) % (diff)

(diffs[i,j] = mark[i] - mark[j]); % (diff)

constraint alldifferent([diffs[i,j] | i,j in 1..n where i > j]);

constraint diffs[2,1] < diffs[n,n-1]; % symmetry break

solve satisfy;

output ["marks = ",show(mark),"\n"];

Figure 43: A model for Golomb rulers with unconstrained variables (golomb.mzn).

UNCONSTRAINED ≡ [DOWNLOAD]

include "alldifferent.mzn";

array[1..15] of var bool: b;

array[1..4] of var 1..10: x;

constraint alldifferent(x) /\ sum(i in 1..4)(x[i]) = 9;

solve satisfy;

Figure 44: A model with unconstrained variables (unconstrained.mzn).

constraint forall(i,j in 1..n)

(diffs[i,j] = if (i > j) then mark[i] - mark[j]

else 0 endif);

ensures that the extra variables are all fixed to 0. With this change the solver returns just one solution.

The real danger of unconstrained search variables is when they are searched upon. Since they

are irrelevant to the problem they can explode the search, for no purpose.

Consider the unsatisfiable model shown in Figure 44 where the Boolean variables b are uncon-

62

http://www.minizinc.org/downloads/tutorial-examples-latest/golomb.mzn
http://www.minizinc.org/downloads/tutorial-examples-latest/unconstrained.mzn

strained. Executing

$ mzn-g12fd --statistics unconstrained.mzn

which prints statistics (we can alternately use -S) shows that search requires 3s and searches 490,000

choices. Removing the useless Boolean variables means the search is instant and searches 14 choices.

Unconstrained Variables
Models should never have unconstrained variables. Sometimes it is difficult to model without

unnecessary variables. If this is the case add constraints to fix the unnecessary variables, so they

cannot influence the solving.

6.3 Effective Generators

Imagine we want to count the number of triangles (K3 subgraphs) appearing in a graph. Suppose

the graph is defined by an adjacency matrix: ad j[i, j] is true if nodes i and j are adjacent. We might

write

int: count = sum ([1 | i,j,k in NODES where i < j /\ j < k

/\ adj[i,j] /\ adj[i,k] /\ adj[j,k]]);

which is certainly correct, but it examines all triples of nodes. If the graph is sparse we can do better

by realising that some tests can be applied as soon as we select i and j.

int: count = sum(i,j in NODES where i < j /\ adj[i,j])(

sum([1 | k in NODES where j < k /\ adj[i,k] /\ adj[j,k]]));

You can use the builitin trace function to help determine what is happening inside generators.

Tracing
The function trace(s,e) prints the string s before evaluating the expression e and returning its

value. It can be used in any context.

For example, we can see how many times the test is performed in the inner loop for both versions

of the calculation.

COUNT1 ≡ [DOWNLOAD]

int:count = sum([1 | i,j,k in NODES where

trace("+", i<j /\j<k /\ adj[i,j] /\ adj[i,k] /\ adj[j,k])]);

adj = [| false, true, true, false

| true, false, true, false

| true, true, false, true

| false, false, true, false |];

solve satisfy;

Produces the output:

++

63

http://www.minizinc.org/downloads/tutorial-examples-latest/count1.mzn

indicating the inner loop is evaluated 64 times while

COUNT2 ≡ [DOWNLOAD]

int: count = sum(i,j in NODES where i < j /\ adj[i,j])(

sum([1 | k in NODES where trace("+", j < k /\ adj[i,k] /\ adj[j,k])]));

Produces the output:

++++++++++++++++

indicating the inner loop is evaluated 16 times.

Note that you can use the dependent strings in trace to understand what is happening during

model creation.

COUNT3 ≡ [DOWNLOAD]

int: count = sum(i,j in NODES where i < j /\ adj[i,j])(

sum([trace("("++show(i)++","++show(j)++","++show(k)++")",1) |

k in NODES where j < k /\ adj[i,k] /\ adj[j,k]]));

will print out each of triangles that is found in the calculation. It produces the output

(1,2,3)

6.4 Redundant Constraints

The form of a model will effect how well the constraint solver can solve it. In many cases adding

constraints which are redundant, i.e. are logically implied by the existing model, may improve the

search for solutions by making more information available to the solver earlier.

Consider the magic series problem from Section ??. Running this for n= 16 as follows:

$ mzn-g12fd --all-solutions --statistics magic-series.mzn -D "n=16;"

might result in output

s = [12, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0];

==========

and the statistics showing 174 choice points required.

We can add redundant constraints to the model. Since each number in the sequence counts the

number of occurrences of a number we know that they sum up to n. Similarly we know that the

sum of s[i]× i must also add up to n because the sequence is magic. Adding these constraints to our

model using

REDUNDANT ≡

constraint sum(i in 0..n-1)(s[i]) = n;

constraint sum(i in 0..n-1)(s[i] * i) = n;

gives the model in Figure 45.

Running the same problem as before

$ mzn-g12fd --all-solutions --statistics magic-series2.mzn -D "n=16;"

results in the same output, but with statistics showing just 13 choicepoints explored. The redundant

constraints have allowed the solver to prune the search much earlier.

64

http://www.minizinc.org/downloads/tutorial-examples-latest/count2.mzn
http://www.minizinc.org/downloads/tutorial-examples-latest/count3.mzn

MAGIC-SERIES2 ≡ [DOWNLOAD]

int: n;

array[0..n-1] of var 0..n: s;

constraint forall(i in 0..n-1) (

s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));

◮ REDUNDANT

solve satisfy;

output ["s = ", show(s), ";\n"] ;

Figure 45: Model solving the magic series problem with redundant constraints

(magic-series2.mzn).

6.5 Modelling Choices

There are many ways to model the same problem in MiniZinc, although some may be more natural

than others. Different models may have very different efficiency of solving, and worse yet, different

models may be better or worse for different solving backends. There are however some guidelines

for usually producing better models:

Choosing between models
The better model is likely to have some of the following features

• smaller number of variables, or at least those that are not functionally defined by other

variables

• smaller domain sizes of variables

• more succinct, or direct, definition of the constraints of the model

• uses global constraints as much as possible

In reality all this has to be tempered by how effective the search is for the model. Usually the

effectiveness of search is hard to judge except by experimentation.

Consider the problem of finding permutations of n numbers from 1 to n such that the differences

between adjacent numbers also form a permutation of numbers 1 to n− 1. Note that the u variables

are functionally defined by the x variables so the raw search space is nn The obvious way to model

this problem is shown in Figure 46

In this model the array x represents the permutation of the n numbers and the constraints are

naturally represented using alldifferent. Running the model

$ mzn-g12fd -all-solutions --statistics allinterval.mzn -D "n=10;"

finds all solutions in 84598 choice points and 3s.

An alternate model is model uses array y where y[i] gives the position of the number i in the

sequence. We also model the positions of the differences using variables v. v[i] is the position in the

65

http://www.minizinc.org/downloads/tutorial-examples-latest/magic-series2.mzn

ALLINTERVAL ≡ [DOWNLOAD]

include "alldifferent.mzn";

int: n;

array[1..n] of var 1..n: x; % sequence of numbers

array[1..n-1] of var 1..n-1: u; % sequence of differences

constraint alldifferent(x);

constraint alldifferent(u);

constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i]));

solve :: int_search(x, first_fail, indomain_min, complete)

satisfy;

output ["x = ",show(x),"\n"];

Figure 46: A natural model for the all interval series problem “prob007” in CSPlib.

(allinterval.mzn).

sequence where the absolute difference i occurs. If the value of y[i] and y[j] differ by one where

j > i, meaning the positions are adjacent, then v[j − i] is constrained to be the earliest of these

positions. We can add two redundant constraints to this model: since we know that a difference

of n − 1 must result, we know that the positions of 1 and n must be adjacent |y[1] − y[n]| = 1,

which also tell us that the position of difference n− 1 is the earlier of y[1] and y[n], i.e. v[n− 1] =

min(y[1], y[n]). With this we can model the problem as shown in Figure 47. The output statement

recreates the original sequence x from the array of positions y .

The inverse model has the same size as the original model, in terms of number of variables and

domain sizes. But the inverse model has a much more indirect way of modelling the relationship

between y and v variables as opposed to the relationship between x and u variables. Hence we

might expect the original model to be better.

The command

$ mzn-g12fd --all-solutions --statistics allinterval2.mzn -D "n=10;"

finds all the solutions in 75536 choice points and 18s. Interesting, although the model is not as

succinct here, the search on the y variables is better than searching on the x variables. The lack of

succinctness means that even though the search requires less choice it is substantially slower.

6.6 Multiple Modelling and Channels

When we have two models for the same problem it may be useful to use both models together by

tying the variables in the two models together, since each can give different information to the solver.

Figure 48 gives a dual model combining features of allinterval.mzn and allinterval2.mzn.

The beginning of the model is taken from allinterval.mzn. We then introduce the y and v vari-

66

http://www.minizinc.org/downloads/tutorial-examples-latest/allinterval.mzn

ALLINTERVAL2 ≡ [DOWNLOAD]

include "alldifferent.mzn";

int: n;

array[1..n] of var 1..n: y; % position of each number

array[1..n-1] of var 1..n-1: v; % position of difference i

constraint alldifferent(y);

constraint alldifferent(v);

constraint forall(i,j in 1..n where i < j)(

(y[i] - y[j] = 1 -> v[j-i] = y[j]) /\

(y[j] - y[i] = 1 -> v[j-i] = y[i])

);

constraint abs(y[1] - y[n]) = 1 /\ v[n-1] = min(y[1], y[n]);

solve :: int_search(y, first_fail, indomain_min, complete)

satisfy;

output ["x = [",] ++

[show(i) ++ if j == n then "]\n;" else ", " endif

| j in 1..n, i in 1..n where j == fix(y[i])];

Figure 47: An inverse model for the all interval series problem “prob007” in CSPlib.

(allinterval2.mzn).

ables from allinterval2.mzn. We tie the variables together using the global inverse: inverse(x , y)

holds if y is the inverse function of x (and vice versa) that is x[i] = j⇔ y[j] = i. A definition is

shown in Figure 49. The model does not include the constraints relating the y and v variables, they

are redundant (and indeed propagation redundant so they do not add information for a propagation

solver. The alldifferent constraints are also missing since they are made redundant (and propaga-

tion redundant) by the inverse constraints. The only constraints are the relationships of the x and u

variables and the redundant constraints on y and v.

One of the benefits of the dual model is that there is more scope for defining different search

strategies. Running the dual model,

$ mzn-g12fd -all-solutions --statistics allinterval3.mzn -D "n=10;"

which note uses the search strategy of the inverse model, labelling the y variables, finds all solutions

in 1714 choice points and 0.5s. Note that running the same model with labelling on x variables

requires 13142 choice points and 1.5s.

67

http://www.minizinc.org/downloads/tutorial-examples-latest/allinterval2.mzn

ALLINTERVAL3 ≡ [DOWNLOAD]

include "inverse.mzn";

int: n;

array[1..n] of var 1..n: x; % sequence of numbers

array[1..n-1] of var 1..n-1: u; % sequence of differences

constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i]));

array[1..n] of var 1..n: y; % position of each number

array[1..n-1] of var 1..n-1: v; % position of difference i

constraint inverse(x,y);

constraint inverse(u,v);

constraint abs(y[1] - y[n]) = 1 /\ v[n-1] = min(y[1], y[n]);

solve :: int_search(y, first_fail, indomain_min, complete)

satisfy;

output ["x = ",show(x),"\n"];

Figure 48: A dual model for the all interval series problem “prob007” in CSPlib.

(allinterval3.mzn).

INVERSE ≡ [DOWNLOAD]

predicate inverse(array[int] of var int: f,

array[int] of var int: invf) =

forall(j in index_set(invf))(invf[j] in index_set(f)) /\

forall(i in index_set(f))(

f[i] in index_set(invf) /\

forall(j in index_set(invf))(j == f[i] <-> i == invf[j])

);

Figure 49: A definition of the inverse global constraint. (inverse.mzn).

7 Boolean Satisfiability Modelling in MiniZinc

MiniZinc can be used to model Boolean satisfiability problems where the variables are restricted to

be Boolean (bool). MiniZinc can be used with efficient Boolean satisfiability solvers to solve the

68

http://www.minizinc.org/downloads/tutorial-examples-latest/allinterval3.mzn
http://www.minizinc.org/downloads/tutorial-examples-latest/inverse.mzn

resulting models efficiently.

7.1 Modelling Integers

Many times although we wish to use a Boolean satisfiability solver we may need to model some

integer parts of our problem.

There are three common ways of modelling an integer variables I in the range 0..m where m =

2k − 1 using Boolean variables.

• Binary: I is represented by k binary variables i0, . . . , ik−1 where I = 2k−1ik−1+2k−2ik−2+ · · ·+

2i1+ i0. This can be represented in MiniZinc as

array[0..k-1] of var bool: i;

var 0..pow(2,k)-1: I = sum(j in 0..k-1)(bool2int(i[j])*pow(2,j));

• Unary: where I is represented by m binary variables i1, . . . , im and i =
∑m

j=1 bool2int(i j).

Since there is massive redundancy in the unary representation we usually require that i j →

i j−1, 1< j ≤ m. This can be represented in MiniZinc as

array[1..m] of var bool: i;

constraint forall(j in 2..m)(i[j] -> i[j-1]);

var 0..m: I = sum(j in 1..m)(bool2int(i[j]);

• Value: where I is represented by m+ 1 binary variables i0, . . . , im where i = k⇔ ik, and at

most one of i0, . . . , im is true. This can be represented in MiniZinc as

array[0..m] of var bool: i;

constraint sum(j in 0..m)(bool2int(i[j]) == 1;

var 0..m: I;

constraint foall(j in 0..m)(I == j <-> i[j]);

There are advantages and disadvantages to each representation. It depends on what operations

on integers are to required in the model as to which is preferable.

7.2 Modelling Disequality

Let us considering modelling a latin squares problem. A latin square is an n×n grid of numbers from

1..n such that each number appears exactly once in every row and column. An integer model for latin

squares is shown in Figure 50.

The only constraint on the integers is in fact disequality, which is encoded in the alldifferent

constraint. The value representation is the best way of representing disequality. A Boolean only

model for latin squares is shown in Figure 51. Note each integer array element a[i, j] is replaced by

an array of Booleans. We use the exactlyone predicate to encode that each value is used exactly once

in every row and every column, as well as to encode that exactly one of the Booleans corresponding

to integer array element a[i, j] is true.

69

LATIN ≡ [DOWNLOAD]

int: n; % size of latin square

array[1..n,1..n] of var 1..n: a;

include "alldifferent.mzn";

constraint forall(i in 1..n)(

alldifferent(j in 1..n)(a[i,j]) /\

alldifferent(j in 1..n)(a[j,i])

);

solve satisfy;

output [show(a[i,j]) ++ if j == n then "\n" else " " endif |

i in 1..n, j in 1..n];

Figure 50: Integer Model for Latin Squares (latin.mzn).

LATINBOOL ≡ [DOWNLOAD]

int: n; % size of latin square

array[1..n,1..n,1..n] of var bool: a;

predicate atmostone(array[int] of var bool:x) =

forall(i,j in index_set(x) where i < j)(

(not x[i] \/ not x[j]));

predicate exactlyone(array[int] of var bool:x) =

atmostone(x) /\ exists(x);

constraint forall(i,j in 1..n)(

exactlyone(k in 1..n)(a[i,j,k]) /\

exactlyone(k in 1..n)(a[i,k,j]) /\

exactlyone(k in 1..n)(a[k,i,j])

);

solve satisfy;

output [if fix(a[i,j,k]) then

show(k) ++ if j == n then "\n" else " " endif

else "" endif | i,j,k in 1..n];

Figure 51: Boolean Model for Latin Squares (latinbool.mzn).

7.3 Modelling Cardinality

Let us consider modelling the Light Up puzzle. The puzzle consists of a rectangular grid of squares

which are blank, or filled. Every filled square may contain a number from 1 to 4, or may have no

70

http://www.minizinc.org/downloads/tutorial-examples-latest/latin.mzn
http://www.minizinc.org/downloads/tutorial-examples-latest/latinbool.mzn

4

 0

0 3

 2

 2

 1

4

 0

0 3

 2

 2

 1

(a) (b)

Figure 52: An example of a Light Up puzzle showing (a) the initial puzzle and (b) the

completed solution

number. The aim is to place lights in the blank squares so that

• Each blank square is “illuminated”, that is can see a light through an uninterupted line of blank

squares

• No two lights can see each other

• The number of lights adjacent to a numbered filled square is exactly the number in the filled

square.

An example of a Light Up puzzle is shown in Figure 52 together with its solution.

This problem is natural to model using Boolean variables to determine which squares contain a

light and which do not, but there is some integer arithmetic to consider for the filled squares.

A model for the problem is given in Figure 53. A data file for the problem shown in Figure 52 is

shown in ??.

The model makes use of a Boolean sum predicate

predicate bool_sum_eq(array[int] of var bool:x, int:s);

which requires that the sum of an array of Boolean equals some fixed integer. There are a number of

ways of modelling such cardinality constraints using Booleans.

• Adder networks: we can use a network of adders to build a binary Boolean representation of

the sum of the Booleans

• Sorting networks: we can use a sorting network to sort the array of Booleans to create a unary

representation of the sum of the Booleans

• Binary decision diagrams: we can create a binary decision diagram (BDD) that encodes the

cardinality constraint.

71

LIGHTUP ≡ [DOWNLOAD]

int: h; % board height

set of int: H = 1..h;

int: w; % board width

set of int: W = 1..w;

array[H,W] of -1..5: b; % board

int: E = -1; % empty square

set of int: N = 0..4; % filled and numbered square

int: F = 5; % filled unnumbered square

% position (i1,j1) is visible to (i2,j2)

test visible(int: i1, int: j1, int: i2, int: j2) =

((i1 == i2) /\ forall(j in min(j1,j2)..max(j1,j2))(b[i1,j] == E))

\/

((j1 == j2) /\ forall(i in min(i1,i2)..max(i1,i2))(b[i,j1] == E));

array[H,W] of var bool: l; % is there a light

% filled squares have no lights

constraint forall(i in H, j in W, where b[i,j] != E)(l[i,j] == false);

% lights next to filled numbered square agree

constraint forall(i in H, j in W where b[i,j] in N)(

bool_sum_eq([l[i1,j1] | i1 in i-1..i+1, j1 in j-1..j+1 where

abs(i1 - i) + abs(j1 - j) == 1 /\

i1 in H /\ j1 in W], b[i,j]));

% each blank square is illuminated

constraint forall(i in H, j in W where b[i,j] == E)(

exists(j1 in W where visible(i,j,i,j1))(l[i,j1]) \/

exists(i1 in H where visible(i,j,i1,j))(l[i1,j])

);

% no two lights see each other

constraint forall(i1,i2 in H, j1,j2 in W where

(i1 != i2 \/ j1 != j2) /\ b[i1,j1] == E

/\ b[i2,j2] == E /\ visible(i1,j1,i2,j2))(

not l[i1,j1] \/ not l[i2,j2]

);

solve satisfy;

output [if b[i,j] != E then show(b[i,j])

else if fix(l[i,j]) then "L" else "." endif

endif ++ if j == w then "\n" else " " endif |

i in H, j in W];

include "boolsum.mzn";

Figure 53: SAT Model for the Light Up puzzle ().

72

http://www.minizinc.org/downloads/tutorial-examples-latest/lightup.mzn

LIGHTUP.DZN ≡ [DOWNLOAD]

h = 7;

w = 7;

b = [| -1,-1,-1,-1, 0,-1,-1

| -1,-1,-1,-1,-1,-1,-1

| 0,-1,-1, 3,-1,-1,-1

| -1,-1, 2,-1, 4,-1,-1

| -1,-1,-1, 5,-1,-1, 1

| -1,-1,-1,-1,-1,-1,-1

| 1,-1, 2,-1,-1,-1,-1 |];

Figure 54: Datafile for the Light Up puzzle instance shown in Figure 52).

BBOOLSUM ≡ [DOWNLOAD]

% the sum of booleans x = s

predicate bool_sum_eq(array[int] of var bool:x, int:s) =

let { int: c = length(x) } in

if s < 0 then false

else if s == 0 then

forall(i in 1..c)(x[i] == false)

else if s < c then

let { % cp = number of bits required for representing 0..c

int: cp = floor(log2(int2float(c))),

% z is sum of x in binary

array[0..cp] of var bool:z } in

binary_sum(x, z) /\

% z == s

forall(i in 0..cp)(z[i] == ((s div pow(2,i)) mod 2 == 1))

else if s == c then

forall(i in 1..c)(x[i] == true)

else false endif endif endif endif;

include "binarysum.mzn";

Figure 55: Cardinality constraints by binary adder networks (bboolsum.mzn).

We can implement bool_sum_eq using binary adder networks using the code shown in Figure 55.

The predicate binary_sum defined in Figure 56 creates a binary representation of the sum of x by

splitting the list into two, summing up each half to create a binary representation and then summing

these two binary numbers using binary_add. If the list x is odd the last bit is saved to use as a carry

in to the binary addition.

73

http://www.minizinc.org/downloads/tutorial-examples-latest/lightup.dzn
http://www.minizinc.org/downloads/tutorial-examples-latest/bboolsum.mzn

BINARYSUM ≡ [DOWNLOAD]

% the sum of bits x = s in binary.

% s[0], s[1], · · ·, s[k] where 2ˆk >= length(x) > 2ˆ(k-1)

predicate binary_sum(array[int] of var bool:x,

array[int] of var bool:s)=

let { int: l = length(x) } in

if l == 1 then s[0] = x[1]

else if l == 2 then

s[0] = (x[1] xor x[2]) /\ s[1] = (x[1] /\ x[2])

else let { int: ll = (l div 2),

array[1..ll] of var bool: f = [x[i] | i in 1..ll],

array[1..ll] of var bool: t = [x[i] | i in ll+1..2*ll],

var bool: b = if ll*2 == l then false else x[l] endif,

int: cp = floor(log2(int2float(ll))),

array[0..cp] of var bool: fs,

array[0..cp] of var bool: ts } in

binary_sum(f, fs) /\ binary_sum(t, ts) /\

binary_add(fs, ts, b, s)

endif endif;

% add two binary numbers x, and y and carry in bit ci to get binary s

predicate binary_add(array[int] of var bool: x,

array[int] of var bool: y,

var bool: ci,

array[int] of var bool: s) =

let { int:l = length(x),

int:n = length(s), } in

assert(l == length(y),

"length of binary_add input args must be same",

assert(n == l \/ n == l+1, "length of binary_add output " ++

"must be equal or one more than inputs",

let { array[0..l] of var bool: c } in

full_adder(x[0], y[0], ci, s[0], c[0]) /\

forall(i in 1..l)(full_adder(x[i], y[i], c[i-1], s[i], c[i])) /\

if n > l then s[n] = c[l] else c[l] == false endif));

predicate full_adder(var bool: x, var bool: y, var bool: ci,

var bool: s, var bool: co) =

let { var bool: xy = x xor y } in

s = (xy xor ci) /\ co = ((x /\ y) \/ (ci /\ xy));

Figure 56: Code for building binary addition networks (binarysum.mzn).

74

http://www.minizinc.org/downloads/tutorial-examples-latest/binarysum.mzn

UBOOLSUM ≡ [DOWNLOAD]

% the sum of booleans x = s

predicate bool_sum_eq(array[int] of var bool:x, int:s) =

let { int: c = length(x) } in

if s < 0 then false

else if s == 0 then forall(i in 1..c)(x[i] == false)

else if s < c then

let { % cp = nearest power of 2 >= c

int: cp = pow(2,ceil(log2(int2float(c)))),

array[1..cp] of var bool:y, % y is padded version of x

array[1..cp] of var bool:z } in

forall(i in 1..c)(y[i] == x[i]) /\

forall(i in c+1..cp)(y[i] == false) /\

oesort(y, z) /\ z[s] == true /\ z[s+1] == false

else if s == c then forall(i in 1..c)(x[i] == true)

else false endif endif endif endif;

include "oesort.mzn";

Figure 57: Cardinality constraints by sorting networks (uboolsum.mzn).

We can implement bool_sum_eq using unary sorting networks using the code shown in Figure 57.

The cardinality constraint is defined by expanding the input x to have length a power of 2, and sorting

the resulting bits using an odd-even merge sorting network. The odd-even merge sorter works shown

in Figure 58 recursively by splitting the input list in 2, sorting each list and merging the two sorted

lists.

We can implement bool_sum_eq using binary decision diagrams using the code shown in

Figure 59. The cardinality constraint is broken into two cases: either the first element x[1] is true,

and the sum of the remaining bits is s − 1, or x[1] is false and the sum of the remaining bits is s.

For efficiency this relies on common subexpression elimination to avoid creating many equivalent

constraints.

75

http://www.minizinc.org/downloads/tutorial-examples-latest/uboolsum.mzn

OESORT ≡ [DOWNLOAD]

%% odd-even sort

%% y is the sorted version of x, all trues before falses

predicate oesort(array[int] of var bool:x, array[int] of var bool:y)=

let { int: c = card(index_set(x)) } in

if c == 1 then x[1] == y[1]

else if c == 2 then comparator(x[1],x[2],y[1],y[2])

else

let {

array[1..c div 2] of var bool:xf = [x[i] | i in 1..c div 2],

array[1..c div 2] of var bool:xl = [x[i] | i in c div 2 +1..c],

array[1..c div 2] of var bool:tf,

array[1..c div 2] of var bool:tl } in

oesort(xf,tf) /\ oesort(xl,tl) /\ oemerge(tf ++ tl, y)

endif endif;

%% odd-even merge

%% y is the sorted version of x, all trues before falses

%% assumes first half of x is sorted, and second half of x

predicate oemerge(array[int] of var bool:x, array[int] of var bool:y)=

let { int: c = card(index_set(x)) } in

if c == 1 then x[1] == y[1]

else if c == 2 then comparator(x[1],x[2],y[1],y[2])

else

let { array[1..c div 2] of var bool:xo =

[x[i] | i in 1..c where i mod 2 == 1],

array[1..c div 2] of var bool:xe =

[x[i] | i in 1..c where i mod 2 == 0],

array[1..c div 2] of var bool:to,

array[1..c div 2] of var bool:te } in

oemerge(xo,to) /\ oemerge(xe,te) /\

y[1] = to[1] /\

forall(i in 1..c div 2 -1)(

comparator(te[i],to[i+1],y[2*i],y[2*i+1])) /\

y[c] = te[c div 2]

endif endif));

% comparator o1 = max(i1,i2), o2 = min(i1,i2)

predicate comparator(var bool:i1,var bool:i2,var bool:o1,var bool:o2)=

(o1 = (i1 \/ i2)) /\ (o2 = (i1 /\ i2));

Figure 58: Odd-even merge sorting networks (oesort.mzn).

76

http://www.minizinc.org/downloads/tutorial-examples-latest/oesort.mzn

BDDSUM ≡ [DOWNLOAD]

% the sum of booleans x = s

predicate bool_sum_eq(array[int] of var bool:x, int:s) =

let { int: c = length(x),

array[1..c] of var bool: y = [x[i] | i in index_set(x)]

} in

rec_bool_sum_eq(y, 1, s);

predicate rec_bool_sum_eq(array[int] of var bool:x, int: f, int:s) =

let { int: c = length(x) } in

if s < 0 then false

else if s == 0 then

forall(i in f..c)(x[i] == false)

else if s < c - f + 1 then

(x[f] == true /\ rec_bool_sum_eq(x,f+1,s-1)) \/

(x[f] == false /\ rec_bool_sum_eq(x,f+1,s))

else if s == c - f + 1 then

forall(i in f..c)(x[i] == true)

else false endif endif endif endif;

Figure 59: Cardinality constraints by binary decision diagrams (bddsum.mzn).

77

http://www.minizinc.org/downloads/tutorial-examples-latest/bddsum.mzn

A MiniZinc Keywords

Note that since MiniZinc shares a parser with Zinc, all the Zinc keywords are also not usable as

MiniZinc identifiers. The keywords are:

ann, annotation, any, array, assert, bool, constraint, enum, float, function, in, include,

int, list, of, op, output, minimize, maximize, par, predicate, record, set, solve, string, test,

tuple, type, var, where.

B MiniZinc Operators

The unary operators are: not, + and -. The binary operators are: <->, ->, <-, \/, xor, /\, <, >, <=,

>=, ==, =, !=, in, subset, superset, union, diff, symdiff, .., intersect, ++, +, -, *, /, div and

mod.

C MiniZinc Functions

The built-in functions in MiniZinc are: abort, abs, acosh, array_intersect, array_union,

array1d, array2d, array3d, array4d, array5d, array6d, asin, assert, atan, bool2int, card,

ceil, concat, cos, cosh, dom, dom_array, dom_size, fix, exp, floor, index_set, index_set_1of2,

index_set_2of2, index_set_1of3, index_set_2of3, index_set_3of3, int2float, is_fixed,

join, lb, lb_array, length, ln, log, log2, log10, min, max, pow, product, round, set2array,

show, show_int, show_float, sin, sinh, sqrt, sum, tan, tanh, trace, ub, and ub_array.

78

Index

.. 4, 10

---------- .5

* .7, 12

+ .7, 12

++ . 5, 20

- .7, 12

/ . 12

/\ . 27

\/ . 27

:: . 54, 57

< . 4

<- . 27

<= . 4

<-> .27

= .4, 13

== . 4

========== .7, 27

> . 4

-> . 27

>= . 4

A

abs . 12

acos . 12

acosh . 12

aggregation function .

exists . 22

forall . 22

iffall . 22

max . 22

min . 22

product . 22

sum . 22

xorall . 22

aisnh . 12

alldifferent .24, 38

ann . 13, 57

annotation 13, 52, 56, 57

argument. .46, 51

array . 14, 20

access . 14, 20, 29

index set . 18

unbounded . 46

literal

1D. .20

2D. .20

array1d . 20

array2d . 20

arraynd . 20

asin . 12

assert . 9

assignment . 3, 13

atan . 12

atanh . 12

B

bool .3, 13

bool2int .27, 32, 33

Boolean . 3, 27

bool_search .56

C

card . 18

comprehension . 21, 51

generator . 21

list . 21, 23

set . 21

constraint . 4

complex . 27

global see global constraint

higher order . 32

redundant . 63

set . 32

cos . 12

cosh . 12

cumulative . 38, 51

D

data file . 7

command line . 9

decision variable.see variable

DFA . 42

diff . 18

disjunctive . 46

div .7

dom . 50, 51

domain . 4, 57

dom . 50

79

lb . 50

reflection . 50, 51

dom_array . 51

E

else . 25

endif . 25

exists .22

exp . 12

expression. .57

arithmetic . 6

assert .46, 47

Boolean .27, 45

conditional .

generator call . 22

let . 48

type-inst . 13

F

false . 27

first_fail . 56

fix . 36

fixed. .12, 21, 36

float . 3, 13

forall . 21, 22

G

generator .21, 62

generator call . 22

global constraint . 24, 38

alldifferent . 38

cumulative . 38

disjunctive . 46

inverse . 66

partition_set . 34

regular . 42

table .40

I

identifier . 4

if . 25

iffall .22

in . 18

include . 12

index_set . 31, 46

index_set_1of2 . 46

index_set_2of2 . 46

indomain_median . 56

indomain_min . 56

indomain_random . 56

indomain_split . 56

input_order .56

int . 3, 13

int2float . 12

integer . 3

inter . 18

int_search . 56

inverse .66

item . 12

annotation . 13, 57

assignment. .13

constraint . 13

include . 12

output . 13

predicate .13, 43

solve .13

variable declaration 12

iterator . 21

K

keywords . 4

L

lb .50, 51

lb_array . 51

let . 51

list . 19

ln . 12

log2 . 12

log10 . 12

M

max . 22

maximize . 7, 13

min . 22

minimize . 7, 13

mod .7

mzn-g12fd . 5

N

negative context .48

not . 27

80

O

objective .7, 48

operator . 4

Boolean. .27

float . 12

integer . 7

relational . 4

set .18

optimization . 7

output . 13, 25

fix . 36

P

par . 13

parameter . 3, 48, 57

pow . 12

predicate .38, 43, 46, 48

definition . 43

product . 22

R

range . 13, 18, 42

float . 10, 13

integer . 4, 13

regular . 42

runtime flag

-a . 25

-all-solutions . 25

-D .9

-statistics . 62

S

satisfaction . 5

satisfy . 13

scope . 51

search. .52

annotation . 54

complete . 54

constrain choice. .56

indomain_median 56

indomain_min 54, 56

indomain_random 56

indomain_split .56

depth first. .53

finite domain . 53

sequential. .56

variable choice . 56

first_fail .54, 56

input_order . 56

smallest . 56

seq_search . 56

set .16, 18, 33

set_search . 56

show . 5

show_float . 5

show_int .5

sin . 12

sinh . 12

smallest . 56

solution . 5

all . 25

end ========== . 7, 27

optimal . 29

separator ---------- 5

solve . 54, 57

sqrt . 12

statistics. .62

string . 3, 13

literal . 5

subset .18

sum . 22

superset . 18

symdiff . 18

symmetry

breaking . 34

T

table . 40

tan . 12

tanh . 12

test . 46

then . 25

trace . 62

true . 27

type .3, 4, 46

decision . 4

enumerated . 36

non-finite . 51

parameter . 3

type-inst . 4, 18

81

U

ub . 51

ub_array . 51

unfixed. .12

union . 18

V

var . 4, 13, 33

float .10

int . 4, 50, 59

set . 33

variable. .3, 48

bound . 50, 58, 60

declaration 4, 10, 12, 57

iterator . 51

local . 48

unconstrained . 60, 62

X

xorall .22

82

	1 Introduction
	2 Basic Modelling in MiniZinc
	2.1 Our First Example
	2.2 An Arithmetic Optimisation Example
	2.3 Datafiles and Assertions
	2.4 Real Number Solving
	2.5 Basic structure of a model

	3 More Complex Models
	3.1 Arrays and Sets
	3.2 Global Constraints
	3.3 Conditional Expressions
	3.4 Complex Constraints
	3.5 Set Constraints
	3.6 Enumerated Types

	4 Predicates
	4.1 Global Constraints
	4.1.1 Alldifferent
	4.1.2 Cumulative
	4.1.3 Table
	4.1.4 Regular

	4.2 Defining Predicates
	4.3 Reflection Functions
	4.4 Local Variables
	4.5 Domain Reflection Functions
	4.6 Scope

	5 Search
	5.1 Finite Domain Search
	5.2 Search Annotations
	5.3 Annotations

	6 Effective Modelling Practices in MiniZinc
	6.1 Variable Bounds
	6.2 Unconstrained Variables
	6.3 Effective Generators
	6.4 Redundant Constraints
	6.5 Modelling Choices
	6.6 Multiple Modelling and Channels

	7 Boolean Satisfiability Modelling in MiniZinc
	7.1 Modelling Integers
	7.2 Modelling Disequality
	7.3 Modelling Cardinality

	A MiniZinc Keywords
	B MiniZinc Operators
	C MiniZinc Functions

